Παράδειγμα 4, Τετράδιο Εργασιών, Χρήση δισδιάστατων πινάκων

Έστω ότι δίνονται δύο δισδιάστατοι πίνακες Α και Β διαστάσεων 5×5 ο καθένας. Να γραφεί ένας αλγόριθμος που θα διαβάζει τα στοιχεία των πινάκων και θα υπολογίζει το άθροισμα των πινάκων, το οποίο θα αποθηκεύεται σε ένα νέο πίνακα.

ΛΥΣΗ: (περισσότερα…)

Παράδειγμα 5, Τετράδιο Εργασιών, Αραιοί πίνακες

Ένας πίνακας λέγεται αραιός (sparse) αν ένα μεγάλο ποσοστό των στοιχείων του έχουν μηδενική τιμή. Δεν υπάρχει ακριβές ποσοστό σε σχέση με τον αριθμό των μηδενικών στοιχείων, επάνω από το οποίο ένας πίνακας χαρακτηρίζεται ως αραιός. Αρκεί όμως, για παράδειγμα, να πούμε ότι με περισσότερο από 80% μηδενικά ένας πίνακας χαρακτηρίζεται ως αραιός. Αραιοί πίνακες συναντώνται συχνά σε μεγάλα επιστημονικά προβλήματα (επίλυση εξισώσεων κ.λπ.). Το πρόβλημα με τη διαχείριση των αραιών πινάκων είναι ότι δαπανάται πολύ χώρος για την αποθήκευση μηδενικών. Άρα πρέπει να βρεθεί ένας οικονομικός τρόπος αποθήκευσης των αραιών πινάκων. Στην πράξη έχουν προταθεί αρκετοί τρόποι. Ένας από αυτούς τους τρόπους περιγράφεται στη συνέχεια. Έστω, λοιπόν, ότι δίνεται ο επόμενος πίνακας, που θέλουμε να τον διαχειρισθούμε ως αραιό.
par5kef3temath
Αντί να αποθηκεύσουμε αυτόν το δισδιάστατο πίνακα 4×5, θα θεωρήσουμε ένα μονοδιάστατο πίνακα όπου θα τοποθετήσουμε μόνο τα μη μηδενικά στοιχεία, για τα οποία όμως χρειαζόμαστε τα στοιχεία των αντίστοιχων γραμμών και στηλών. Έτσι καταλήγουμε κάθε μη μηδενικό στοιχείο να αντιπροσωπεύεται από μία τριάδα στοιχείων, δηλαδή <γραμμή,στήλη,τιμή>. Για το λόγο αυτό δημιουργούμε ένα μονοδιάστατο πίνακα 18 θέσεων για τα 6 μη μηδενικά στοιχεία του αρχικού πίνακα. Ο νέος πίνακας έχει τη μορφή:
par5kef3temath2
Πλέον, το πρόβλημα έγκειται στην αναγνώριση της τιμής μίας θέσης του παλαιού πίνακα, δεδομένου ότι ο πίνακας είναι αποθηκευμένος με τη νέα του μορφή. Ο επόμενος αλγόριθμος “Αραιός” επιστρέφει την τιμή του στοιχείου που βρίσκεται στη θέση <γραμμή Ι, στήλη m> του αρχικού πίνακα επεξεργαζόμενος τη νέα μορφή του πίνακα που αποτελείται από 3n θέσεις, όπου n ο αριθμός των μη μηδενικών στοιχείων.

ΛΥΣΗ: (περισσότερα…)

Θέμα Β, Ερώτημα 2, 2016, Επαναληπτικές, Ημερήσια, Παλαιό

Δίνεται μονοδιάστατος πίνακας Α[40] και το παρακάτω ημιτελές τμήμα αλγορίθμου, το οποίο αντιγράφει όλα τα στοιχεία του Α σε ένα δισδιάστατο πίνακα Β[8,5] κατά γραμμή. Δηλαδή, τα 5 πρώτα στοιχεία του μονοδιάστατου πίνακα τοποθετούνται στην πρώτη γραμμή του πίνακα Β, τα επόμενα 5 στη δεύτερη γραμμή κ.ο.κ.

I <-- 1 
K <-- 1
Για M από 1 μέχρι …(1)…
             B[I, K] <-- A[…(2)…]
              …(3)... <-- …(4)…+ 1
             Αν …(5)… > …(6)… τότε
                        I <-- I + …(7)…
                        K <-- …(8)…
             Τέλος_αν 
Τέλος_επανάληψης

Να γράψετε στο τετράδιό σας τους αριθμούς (1) έως (8), που αντιστοιχούν στα κενά του αλγορίθμου, και, δίπλα σε κάθε αριθμό, ό,τι πρέπει να συμπληρωθεί, ώστε το τμήμα αλγορίθμου να επιτελεί τη λειτουργία που περιγράφεται.

Μονάδες 8

Τα θέματα σε pdf, 2016, Ημερήσια, Επαναληπτικές, Παλαιό

ΛΥΣΗ

I <-- 1 
K <-- 1 
Για M από 1 μέχρι  40  
    B[I, K] <-- A[ Μ ] 
    Κ  <--  Κ  + 1 
Αν  Κ  >  5  τότε 
I ← I +  1  
K ←  1  
Τέλος_αν 
Τέλος_επανάληψης

Θέμα Δ, 2016, Επαναληπτικές, Ημερήσια, Παλαιό

Μια εταιρεία έχει δύο υποκαταστήματα, ένα στην Αθήνα και ένα στη Θεσσαλονίκη. Σε κάθε υποκατάστημα εργάζονται 10 πωλητές.

Να αναπτύξετε αλγόριθμο σε ψευδογλώσσα, ο οποίος:
Δ1. Για καθέναν από τους 20 πωλητές της εταιρείας, να διαβάζει το όνομά του και τον κωδικό του και να τα καταχωρίζει σε κατάλληλο δισδιάστατο πίνακα, έτσι ώστε στις πρώτες 10 γραμμές του πίνακα να υπάρχουν τα στοιχεία των πωλητών του υποκαταστήματος της Αθήνας και στις επόμενες 10 τα στοιχεία των πωλητών της Θεσσαλονίκης. Να θεωρήσετε ότι όλα τα ονόματα και όλοι οι κωδικοί είναι διαφορετικοί μεταξύ τους. Μονάδες 2

Δ2. Για κάθε παραγγελία της εταιρείας στη διάρκεια του προηγούμενου έτους, να διαβάζει τον κωδικό του πωλητή. Αν ο κωδικός ανήκει σε πωλητή της εταιρείας, να διαβάζει το ποσό της αντίστοιχης παραγγελίας που πήρε ο πωλητής (δεν απαιτείται έλεγχος εγκυρότητας) ή, διαφορετικά, να εμφανίζει το μήνυμα «Άγνωστος κωδικός». Η επαναληπτική διαδικασία να τερματίζεται όταν δοθεί, ως κωδικός πωλητή, η τιμή ΤΕΛΟΣ. Μονάδες 8

Δ3. Να υπολογίζει τις συνολικές πωλήσεις κάθε πωλητή στη διάρκεια του προηγούμενου έτους και να τις εμφανίζει μαζί με το όνομά του. Να θεωρήσετε ότι κάθε πωλητής πήρε παραπάνω από μία παραγγελία στη διάρκεια του προηγούμενου έτους. Μονάδες 4

Δ4. Για κάθε υποκατάστημα να βρίσκει και να εμφανίζει τα ονόματα των τριών πωλητών με τις μεγαλύτερες συνολικές πωλήσεις στη διάρκεια του προηγούμενου έτους. Να θεωρήσετε ότι οι συνολικές πωλήσεις όλων των πωλητών είναι διαφορετικές μεταξύ τους. Μονάδες 6

ΦΥΛΛΑΔΙΟ ΘΕΜΑΤΩΝ

ΛΥΣΗ (περισσότερα…)

Θέμα Γ, 2013, Μαΐου-Ιουνίου, Ημερήσια

Η χρήση των κινητών τηλεφώνων, των φορητών υπολογιστών, των tablet υπολογιστών από τους νέους αυξάνεται ραγδαία. Ένας από τους στόχους των ερευνητών είναι να διερευνήσουν αν υπάρχουν επιπτώσεις στην υγεία των ανθρώπων από την αυξημένη έκθεση στα ηλεκτρομαγνητικά πεδία. Για τον σκοπό αυτό γίνονται μετρήσεις του ειδικού ρυθμού απορρόφησης (SAR) της ηλεκτρομαγνητικής ακτινοβολίας, πάνω στο ανθρώπινο σώμα. Ο δείκτης SAR μετράται σε Watt/Kgr και ο παγκόσμιος οργανισμός υγείας έχει θεσμοθετήσει ότι τα επιτρεπτά όρια για το κεφάλι και τον κορμό είναι μέχρι και 2 Watt/Kgr, ενώ για τα άκρα μέχρι και 4 Watt/Kgr. Θέλοντας να προσομοιάσουμε την έρευνα, θεωρούμε ότι σε 30 μαθητές έχουν τοποθετηθεί στον καθένα δυο μετρητές του δείκτη SAR, ο ένας στο κεφάλι και ο άλλος σε ένα από τα άνω άκρα, οι οποίοι καταγράφουν τις τιμές του αντίστοιχου δείκτη SAR κάθε 6 λεπτά.

Να αναπτύξετε αλγόριθμο σε ψευδογλώσσα, ο οποίος:

Γ1. Να διαβάζει τους πίνακες: ΚΩΔ[30], ο οποίος θα περιέχει τους κωδικούς των 30 μαθητών, τον πίνακα ΚΕΦ[30,10], του οποίου κάθε γραμμή θα αντιστοιχεί σε έναν μαθητή και θα έχει 10 τιμές που αντιστοιχούν στο SAR της κεφαλής για μια ώρα, καθώς και τον πίνακα ΑΚΡ[30,10] που κάθε γραμμή θα αντιστοιχεί σε έναν μαθητή και θα έχει 10 τιμές που αντιστοιχούν στο SAR του άκρου για μια ώρα.

Μονάδες 2

Γ2.     Για κάθε μαθητή να καταχωρεί σε δισδιάστατο πίνακα ΜΟ[30,2] τις μέσες τιμές του SAR για το κεφάλι στην 1η στήλη και για το άκρο στη 2η στήλη.

Μονάδες 4

Γ3.     Να εμφανίζει για κάθε μαθητή τον κωδικό του και ένα από τα μηνύματα, «Χαμηλός SAR», «Κοντά στα όρια», «Εκτός ορίων», όταν η μέση τιμή του SAR της κεφαλής, καθώς και η μέση τιμή του SAR ενός εκ των άκρων του κυμαίνονται στις παρακάτω περιοχές:

Μ.Ο. SAR κεφαλής <=1,8 >1,8 και <=2 >2
Μ.Ο. SAR άκρου <=3,6 >3,6   και <=4 >4
Μήνυμα «Χαμηλός SAR» «Κοντά στα όρια» «Εκτός ορίων»

Το μήνυμα που θα εμφανίζεται θα πρέπει να είναι ένα μόνο για κάθε μαθητή και θα εξάγεται από τον συνδυασμό των τιμών των μέσων όρων των δυο SAR, όπου βαρύτητα θα έχει ο μέσος όρος, ο οποίος θα βρίσκεται σε μεγαλύτερη περιοχή τιμών. Για παράδειγμα, αν ο μέσος όρος SAR του άκρου έχει τιμή 3,8 και της κεφαλής έχει τιμή 1,5 τότε πρέπει να εμφανίζεται το μήνυμα «Κοντά στα όρια» και κανένα άλλο.

Μονάδες 7

Γ4. Θεωρώντας ότι όλες οι τιμές του πίνακα ΜΟ[30,2] είναι διαφορετικές, να εμφανίζει τις τρεις μεγαλύτερες τιμές για τον μέσο όρο SAR της κεφαλής και τους κωδικούς των μαθητών που αντιστοιχούν σε αυτές. Μετά να εμφανίζει τις τρεις μεγαλύτερες τιμές για τον μέσο όρο SAR του άκρου και τους κωδικούς των μαθητών που αντιστοιχούν σε αυτές.

Μονάδες 7

2012, Μαΐου-Ιουνίου, Ημερήσια

ΛΥΣΗ (περισσότερα…)

Ερώτημα 3, Θέμα Α, 2011, Επαναληπτικές, Ημερήσια

Να ξαναγράψετε στο τετράδιό σας καθένα από τα παρακάτω τμήματα αλγορίθμου, χρησιμοποιώντας μόνο μία δομή επανάληψης Για … Από …. Μέχρι και χωρίς τη χρήση δομής επιλογής.

(α)
i <- 1
j <- 1
Αρχή_επανάληψης
Εμφάνισε Α[i,j]
i <- i + 1
j <- j + 1
Μέχρις_ότου j > 100
(μονάδες 4)
(β)
Για i από 1 μέχρι 100
Για j από 1 μέχρι 100
Αν i = 50 τότε
Εμφάνισε Α[i,j]
Τέλος_αν
Τέλος_επανάληψης
Τέλος_επανάληψης
(μονάδες 4)

Μονάδες 8

Τα θέματα σε pdf, 2011, Επαναληπτικές, Ημερήσια

Θέμα Δ, 2011, Μαΐου-Ιουνίου, Ημερήσια

Στην αρχή της ποδοσφαιρικής περιόδου οι 22 παίκτες μιας ομάδας, οι οποίοι αριθμούνται από 1 έως 22, ψηφίζουν για τους 3 αρχηγούς που θα τους εκπροσωπούν. Κάθε παίκτης μπορεί να ψηφίσει όσους συμπαίκτες του θέλει, ακόμα και τον εαυτό του. Τα αποτελέσματα της ψηφοφορίας καταχωρίζονται σε έναν πίνακα ΨΗΦΟΣ με 22 γραμμές και 22 στήλες, έτσι ώστε το στοιχείο ΨΗΦΟΣ[i,j] να έχει την τιμή 1, όταν ο παίκτης με αριθμό i έχει ψηφίσει τον παίκτη με αριθμό j, και τιμή 0 στην αντίθετη περίπτωση. Να γράψετε αλγόριθμο ο οποίος:

Δ1. Να διαβάζει τα στοιχεία του πίνακα ΨΗΦΟΣ και να ελέγχει την ορθότητά τους με αποδεκτές τιμές 0 ή 1.

Μονάδες 4

Δ2. Να εμφανίζει το πλήθος των παικτών που δεν ψήφισαν κανέναν.

Μονάδες 4

Δ3. Να εμφανίζει το πλήθος των παικτών που ψήφισαν τον εαυτό τους.

Μονάδες 4

Δ4. Να βρίσκει τους 3 παίκτες που έλαβαν τις περισσότερες ψήφους και να εμφανίζει τους αριθμούς τους και τις ψήφους που έλαβαν. Θεωρήστε ότι δεν υπάρχουν ισοψηφίες.

Μονάδες 8

 Τα θέματα σε pdf, 2011, Μαΐου-Ιουνίου, Ημερήσια

ΛΥΣΗ (περισσότερα…)

Θέμα Α, Ερώτημα 4, 2010, Μαΐου-Ιουνίου, Ημερήσια

Έστω πίνακας table με Μ γραμμές και Ν στήλες που περιέχει αριθμητικές τιμές. Δίνεται ο παρακάτω αλγόριθμος που υπολογίζει το άθροισμα κατά γραμμή, κατά στήλη και συνολικά.

  1. Αλγόριθμος Αθρ_Πίνακα
  2. Δεδομένα // m, n, table //
  3. sum <- 0
  4. Για i από 1 μέχρι m
  5. row [i] <- 0
  6. Τέλος_επανάληψης
  7. Για j από 1 μέχρι n
  8. col [j] <- 0
  9. Τέλος_επανάληψης
  10. Για i από 1 μέχρι m
  11. Για j από 1 μέχρι n
  12. ______________ 
  13. ______________ 
  14. ______________ 
  15. Τέλος_επανάληψης
  16. Τέλος_επανάληψης
  17. Αποτελέσματα // row, col, sum  //
  18. Τέλος Αθρ_Πίνακα

Τα αθροίσματα των γραμμών καταχωρίζονται στον πίνακα row, των στηλών στον πίνακα col και το συνολικό άθροισμα στη μεταβλητή sum.
Να γράψετε στο τετράδιό σας τις εντολές που πρέπει να συμπληρωθούν στις γραμμές 12, 13 και 14, ώστε ο αλγόριθμος να επιτελεί τη λειτουργία που περιγράφτηκε.

Μονάδες 6

ΛΥΣΗ
(περισσότερα…)

Ερώτημα 3, Θέμα A, 2010, Επαναληπτικές, Ημερήσια

Να αναπτύξετε πρόγραμμα σε ΓΛΩΣΣΑ το οποίο δημιουργεί:

  1. Πίνακα 5 γραμμών και 7 στηλών, όπου σε κάθε θέση του, με χρήση επαναληπτικών δομών, να εισάγεται ένας αριθμός που ισούται με το άθροισμα του αριθμού γραμμής και του αριθμού στήλης της θέσης. (μονάδες 5)
  2. Μονοδιάστατο πίνακα με 10 στοιχεία, όπου σε κάθε θέση του, με χρήση επαναληπτικών δομών, να εισάγεται στην πρώτη θέση ο αριθμός 300 και σε κάθε επόμενη το μισό της τιμής της προηγούμενης, δηλαδή στη δεύτερη θέση το 150, στην τρίτη το 75 κ.ο.κ. (μονάδες 5)

Μονάδες 10

Τα θέματα σε pdf, 2010, Επαναληπτικές, Ημερήσια

Θέμα Δ, 2009, Μαΐου-Ιουνίου, Ημερήσια

Ξενοδοχειακή επιχείρηση διαθέτει 25 δωμάτια. Τα δωμάτια αριθμούνται από το 1 μέχρι το 25. Ο συνολικός αριθμός των υπαλλήλων που απασχολούνται ημερησίως στο ξενοδοχείο εξαρτάται από τα κατειλημμένα δωμάτια και δίνεται από τον παρακάτω πίνακα

Αριθμός κατειλημμένων δωματίων Συνολικός αριθμός υπαλλήλων
από 0 μέχρι 4 3
από 5 μέχρι 8 4
από 9 μέχρι 12 5
πάνω από 12 6

Η   ημερήσια   χρέωση   για   κάθε   δωμάτιο   είναι   75€  και   το ημερομίσθιο κάθε υπαλλήλου 45€.
Α.    Να κατασκευάσετε κύριο πρόγραμμα το οποίο:

  1. Να περιλαμβάνει τμήμα δηλώσεων.

Μονάδες 3

  1. Να διαβάζει σε πίνακα ΚΡΑΤ[25,7] την κατάσταση κάθε δωματίου για κάθε μέρα της εβδομάδας, ελέγχοντας την ορθή καταχώριση. Το πρόγραμμα να δέχεται μόνο τους χαρακτήρες «Κ» για κατειλημμένο, «Δ» για διαθέσιμο αντίστοιχα.

Μονάδες 4

  1. Να υπολογίζει το συνολικό κέρδος ή τη συνολική ζημιά κατά τη διάρκεια της εβδομάδας και να εμφανίζει κατάλληλο μήνυμα. Για το σκοπό αυτό να καλεί το υποπρόγραμμα ΚΕΡΔΟΣ, που περιγράφεται στο ερώτημα B.

Μονάδες 4

Β.    Να αναπτύξετε το υποπρόγραμμα ΚΕΡΔΟΣ, το οποίο να δέχεται τον πίνακα των κρατήσεων και έναν αριθμό ημέρας (από 1 έως 7). Το υποπρόγραμμα να υπολογίζει και να επιστρέφει το κέρδος της συγκεκριμένης ημέρας. Το κέρδος κάθε ημέρας προκύπτει από τα ημερήσια έσοδα ενοικιάσεων, αν αφαιρεθούν τα ημερομίσθια των υπαλλήλων της συγκεκριμένης ημέρας. Αν τα έσοδα είναι μικρότερα από τα ημερομίσθια, το κέρδος είναι αρνητικό (ζημιά).

Μονάδες 9

Τα θέματα σε pdf, 2009, Μαΐου-Ιουνίου, Ημερήσια

ΛΥΣΗ

(περισσότερα…)

Θέμα Γ, 2009, Επαναληπτικές, Ημερήσια

Στις γενικές εξετάσεις, κάθε γραπτό βαθμολογείται από δύο βαθμολογητές στην κλίμακα 1-100. Όταν η διαφορά των δύο βαθμών είναι μεγαλύτερη από δώδεκα μονάδες, το γραπτό αναβαθμολογείται, δηλαδή βαθμολογείται και από τρίτο βαθμολογητή.

Στα γραπτά που δεν έχουν αναβαθμολογηθεί, ο τελικός βαθμός προκύπτει από το πηλίκο της διαίρεσης του αθροίσματος των βαθμών των δύο βαθμολογητών διά δέκα.

Στα γραπτά που έχουν αναβαθμολογηθεί, ο τελικός βαθμός προκύπτει με τον ίδιο τρόπο, αλλά λαμβάνονται υπόψη οι δύο μεγαλύτεροι βαθμοί.

Για στατιστικούς λόγους, οι τελικοί βαθμοί (ΤΒ) κατανέμονται στις παρακάτω βαθμολογικές κατηγορίες:

1η 2η 3η 4η 5η 6η
0≤ΤΒ<5 5≤ΤΒ<10 10≤ TΒ<12 12≤ΤΒ<15 15≤ΤΒ<18 18≤ΤΒ≤20

Σ’ ένα βαθμολογικό κέντρο υπάρχουν 780 γραπτά στο μάθημα «Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον».

Οι βαθμοί των δύο βαθμολογητών έχουν καταχωριστεί στις δύο πρώτες στήλες ενός πίνακα Β[780,3].

Να γραφεί αλγόριθμος ο οποίος:

Α. Να ελέγχει, για κάθε γραπτό, αν χρειάζεται αναβαθμολόγηση. Αν χρειάζεται, να ζητάει από τον χρήστη τον βαθμό του τρίτου βαθμολογητή και να τον εισάγει στην αντίστοιχη θέση της τρίτης στήλης, διαφορετικά να εισάγει την τιμή -1.

Δεν απαιτείται έλεγχος εγκυρότητας.

Μονάδες 4

Β. Να υπολογίζει τον τελικό βαθμό κάθε γραπτού και να τον καταχωρίζει στην αντίστοιχη θέση ενός πίνακα Τ[780].

Μονάδες 7

Γ.  Να εμφανίζει τη βαθμολογική κατηγορία (ή τις κατηγορίες) με το μεγαλύτερο πλήθος γραπτών.

Μονάδες 9

Τα θέματα σε pdf, 2009, Επαναληπτικές, Ημερήσια

ΛΥΣΗ

(περισσότερα…)

Θέμα Δ, 2009, Επαναληπτικές, Ημερήσια

Το παιχνίδι τρίλιζα παίζεται με διαδοχικές κινήσεις δύο παικτών σε έναν πίνακα Τ[3,3]. Οι παίκτες συμπληρώνουν εναλλάξ μια θέση του πίνακα, τοποθετώντας ο μεν πρώτος το σύμβολοχαρακτήρα ‘Χ’, ο δε δεύτερος το σύμβολο–χαρακτήρα ‘Ο’.

Νικητής είναι ο παίκτης που θα συμπληρώσει πρώτος μια τριάδα όμοιων συμβόλων σε κάποια γραμμή, στήλη ή διαγώνιο του πίνακα. Αν ο πίνακας συμπληρωθεί χωρίς νικητή, το παιχνίδι θεωρείται ισόπαλο.

Α. Να γράψετε πρόγραμμα στη «ΓΛΩΣΣΑ», το οποίο:

  1. Να τοποθετεί σε κάθε θέση του πίνακα Τ τον χαρακτήρα ‘-’.

Μονάδες 2

  1. Για κάθε κίνηση:

α. Να δέχεται τις συντεταγμένες μιας θέσης του πίνακα Τ και να τοποθετεί στην αντίστοιχη θέση το σύμβολο του παίκτη. Να θεωρήσετε ότι οι τιμές των συντεταγμένων είναι πάντοτε σωστές (1 έως 3) είναι όμως αποδεκτές, μόνον αν η θέση που προσδιορίζουν δεν περιέχει ήδη ένα σύμβολο παίκτη.

Μονάδες 4

β. Να ελέγχει εάν με την κίνησή του ο παίκτης νίκησε. Για τον σκοπό αυτόν, να καλεί τη συνάρτηση ΝΙΚΗΣΕ, που περιγράφεται στο ερώτημα Β.

Μονάδες 2

  1. Να τερματίζει το παιχνίδι, εφόσον σημειωθεί ισοπαλία ή νικήσει ένας από τους δύο παίκτες.

Μονάδες 2

  1. Να εμφανίζει με κατάλληλο μήνυμα (πρώτος παίκτης/ δεύτερος παίκτης/ισοπαλία) το αποτέλεσμα του παιχνιδιού.

Μονάδες 2

Β. Να κατασκευάσετε τη συνάρτηση ΝΙΚΗΣΕ, η οποία θα δέχεται τον πίνακα Τ και τις συντεταγμένες (Γ, Σ) μιας θέσης του πίνακα και θα επιστρέφει την τιμή ΑΛΗΘΗΣ, αν υπάρχει τρεις φορές το ίδιο σύμβολο, σε τουλάχιστον μια από τις παρακάτω περιπτώσεις:

  1. Στη γραμμή Γ.
  2. Στη στήλη Σ.
  3. Στην κύρια διαγώνιο (δηλαδή Γ=Σ).
  4. Στη δευτερεύουσα διαγώνιο (δηλαδή Γ+Σ=4).

Σε κάθε άλλη περίπτωση, η συνάρτηση να επιστρέφει την τιμή ΨΕΥΔΗΣ.

Μονάδες 8

Τα θέματα σε pdf, 2009, Επαναληπτικές, Ημερήσια

ΛΥΣΗ

(περισσότερα…)