Κεφάλαιο 3, ΔΤ, ΠΙΝΑΚΕΣ
Σε μία κατασκήνωση υπάρχουν 300 παιδιά και καθένα από αυτά έχει μοναδικό αριθμό από το 1 έως και το 300 που του αντιστοιχεί. Για κάθε παιδί είναι γνωστή η ηλικία του. Να χρησιμοποιηθεί η δομή του πίνακα για να αποθηκεύονται οι ηλικίες των παιδιών και να βρεθεί ο κατάλληλος αλγόριθμος υπολογισμού του μικρότερου και μεγαλύτερου σε ηλικία παιδιού και να εκτυπώνεται τόσο η ηλικία όσο και ο κωδικός του μικρότερου και μεγαλύτερου παιδιού.
ΛΥΣΗ: (περισσότερα…)
Κεφάλαιο 3, ΔΤ, ΤΑΞΙΝΟΜΗΣΗ
ΕΚΦΩΝΗΣΗ:
Ο αλγόριθμος της φυσαλίδας όπως διατυπώθηκε στην παράγραφο 3.7 έχει το μειονέκτημα ότι δεν είναι αρκετά “έξυπνος” ώστε να διαπιστώνει στην αρχή ή στο μέσο της διαδικασίας αν ο πίνακας είναι ταξινομημένος. Να σχεδιασθεί μία παραλλαγή του αλγορίθμου αυτού που να σταματά όταν διαπιστωθεί ότι τα στοιχεία του πίνακα είναι ήδη ταξινομημένα. Υπόδειξη: Να χρησιμοποιήσετε μία βοηθητική μεταβλητή που να ελέγχει το τέλος κάθε επανάληψης του εξωτερικού βρόχου (“Για i από 2 μέχρι n”) αν για την τρέχουσα τιμή του i έγιναν αντιμεταθέσεις στοιχείων.
Κεφάλαιο 3, ΔΤ, ΣΤΟΙΒΑ ΟΥΡΑ
Να δοθούν οι αλγόριθμοι Ώθηση (Push) και Απώθηση (Pop) που αντίστοιχα εκτελούν τις προφανείς λειτουργίες σε μία στοίβα. Να δοθεί ένα παράδειγμα στο οποίο να χρησιμοποιείται μία στοίβα από ακέραιους. Η στοίβα αντιπροσωπεύεται από έναν πίνακα μέχρι 100 θέσεων.
ΛΥΣΗ: (περισσότερα…)
Κεφάλαιο 3, ΔΤ, ΣΤΟΙΒΑ ΟΥΡΑ
Να δοθούν οι αλγόριθμοι ΕισαγωγήσεΟυρά (Enqueue) και ΕξαγωγήαπόΟυρά (Dequeue) που αντίστοιχα εκτελούν τις προφανείς λειτουργίες σε μία ουρά. Να δοθεί ένα παράδειγμα στο οποίο να χρησιμοποιείται μία ουρά από ακέραιους. Η ουρά αντιπροσωπεύεται από έναν πίνακα μέχρι 100 θέσεων.
ΛΥΣΗ: (περισσότερα…)
Κεφάλαιο 3, ΔΤ, ΣΤΟΙΒΑ ΟΥΡΑ
Έστω ότι η τάξη σας θα συμμετάσχει στην ημερήσια εθελοντική αιμοδοσία που πραγματοποιεί ο Δήμος της πόλης σας. Είναι γνωστό το επίθετο κάθε μαθητή και όλοι οι μαθητές θα συμμετάσχουν στην αιμοδοσία. Να γραφεί αλγόριθμος για τη δημιουργία ουράς των μαθητών έξω από το Κέντρο αιμοδοσίας με δεδομένο ότι η ουρά θα δημιουργηθεί με βάση την αλφαβητική σειρά των επιθέτων των μαθητών.
ΛΥΣΗ: (περισσότερα…)
Κεφάλαιο 3, ΔΤ
Μία οικολογική οργάνωση διαθέτει στοιχεία για το ποσοστό δασών για 50 διαφορετικές χώρες. Χρειάζεται να πάρει απόφαση για να διοργανώσει μία εκδήλωση διαμαρτυρίας στις 10 χώρες που έχουν το χαμηλότερο ποσοστό δασών. Να δοθεί αλγόριθμος που θα ταξινομεί τα ποσοστά δασών των χωρών με χρήση της μεθόδου της ευθείας ανταλλαγής και θα εκτυπώνει τις 10 χώρες στις οποίες θα διοργανωθούν οι εκδηλώσεις.
ΛΥΣΗ: (περισσότερα…)
Πρόσφατα σχόλια