Επιλογή Σελίδας

Θέμα B, Eρώτημα 2, 2015, Ημερήσια

Το παρακάτω ημιτελές τμήμα αλγορίθμου εισάγει αριθμητικές τιμές σε πίνακα 100 θέσεων ώστε:
α. οι τιμές να είναι διαφορετικές μεταξύ τους,
β. οι τιμές να εισάγονται σε αύξουσα σειρά.
Εάν κάποια εισαγόμενη τιμή δεν ικανοποιεί τις συνθήκες (α) και (β), επανεισάγεται.

Διάβασε Π[ ...(1)...] 
 Για i από ...(2)... μέχρι ...(3)...
     Αρχή_επανάληψης 
         Διάβασε Π[i]
     Μέχρις_ότου Π[ ...(4)...] ...(5)... Π[ ...(6)...]
 Τέλος_επανάληψης

Να γράψετε στο τετράδιό σας τους αριθμούς (1) έως (6), που αντιστοιχούν στα κενά του αλγορίθμου και, δίπλα σε κάθε αριθμό, ό,τι πρέπει να συμπληρωθεί, ώστε το τμήμα αλγορίθμου να επιτελεί τη λειτουργία που περιγράφεται.

Μονάδες 6

Τα θέματα σε pdf, 2015, Μαΐου-Ιουνίου, Ημερήσια

ΛΥΣΗ

(1) 1 , (2) 2, (3) 100 , (4) i , (5) > , (6) i-1

Θέμα Γ, 2015, Επαναληπτικές, Ημερήσια

Σύμφωνα με το διεθνές σύστημα ονοματολογίας της IUPAC, το όνομα ενός άκυκλου υδρογονάνθρακα CxHy με ευθύγραμμη ανθρακική αλυσίδα αποτελείται από τρία συνθετικά. Το πρώτο συνθετικό (σ1) καθορίζεται από τον αριθμό x των ατόμων άνθρακα, ως εξής: Όταν x=1, η τιμή του σ1 είναι μεθ· όταν   x=2, η τιμή του σ1 είναι αιθ· όταν x=3, η τιμή του σ1 είναι προπ· όταν x=4, η τιμή του σ1 είναι βουτ· όταν x=5, η τιμή του σ1 είναι πεντ· όταν x=6, η τιμή του σ1 είναι εξ κ.ο.κ. Το δεύτερο συνθετικό (σ2) εξαρτάται από τον αριθμό x των ατόμων του άνθρακα και από τον αριθμό y των ατόμων υδρογόνου και η τιμή του είναι σ2=άν ή σ2 = έν ή σ2=ίν ή σ2=αδιέν, σύμφωνα με τις συνθήκες που φαίνονται στον Πίνακα II.

Τιμή  του  σ2 Συνθήκη
άν y=2x+2, x≥1
έν y=2x, x≥2
ίν y=2x-2, x≥2
αδιέν y=2x-2, x≥3

Πίνακας  ΙΙ

Το τρίτο συνθετικό (σ3) είναι σε κάθε περίπτωση η κατάληξη ιο.
Όπως φαίνεται στον Πίνακα II, όταν x≥3, η τιμή του σ2 είναι ίν ή αδιέν. Ο τρόπος καθορισμού του ορθού ονόματος της ένωσης στην περίπτωση αυτή δεν μας ενδιαφέρει στο πλαίσιο της άσκησης.
Για παράδειγμα, όταν x=3 και y=8, η ένωση είναι το προπάνιο, ενώ αν x=3 και y=4, η ένωση είναι το προπίνιο ή το προπαδιένιο.
Να κατασκευάσετε αλγόριθμο ο οποίος:
Γ1. Να ζητάει τον αριθμό ατόμων άνθρακα της χημικής ένωσης, κάνοντας έλεγχο εγκυρότητας ώστε αυτός να είναι θετικός.
Μονάδες 2
Γ2. Να ζητάει τον αριθμό ατόμων υδρογόνου της χημικής ένωσης, κάνοντας έλεγχο εγκυρότητας ώστε να ικανοποιείται τουλάχιστον μία από τις συνθήκες του Πίνακα II.
Μονάδες 6
Γ3.   Να εκχωρεί στις μεταβλητές
σ1: το πρώτο συνθετικό του ονόματος της χημικής ένωσης. Θεωρείστε ότι δίνεται πίνακας Π, σε διαδοχικές θέσεις του οποίου βρίσκονται ήδη καταχωρισμένα τα λεκτικά που αντιστοιχούν στον αριθμό των ατόμων του άνθρακα (μονάδες 2) και
σ3: την κατάληξη του ονόματος της χημικής ένωσης (μονάδες 2).
Μονάδες 4
Γ4. Να υπολογίζει το σ2 και να εμφανίζει το όνομα (ή τα ονόματα) της χημικής ένωσης, εμφανίζοντας τα τρία συνθετικά, το ένα δίπλα στο άλλο, χωρισμένα με το χαρακτήρα «».
Μονάδες 8

Τα θέματα σε pdf, 2015, Επαναληπτικές, Ημερήσια

ΛΥΣΗ (περισσότερα…)

Θέμα Δ, 2014, Επαναληπτικές, Ημερήσια

Στις πρόσφατες δημοτικές εκλογές, σε κάποιο δήμο της χώρας, χρησιμοποιήθηκαν για την ψηφοφορία 217 αίθουσες (εκλογικά τμήματα), σε 34 δημόσια κτήρια (εκλογικά καταστήματα). Τα τμήματα αριθμήθηκαν με τη σειρά, από το 1 μέχρι το 217, έτσι ώστε οι αριθμοί των εκλογικών τμημάτων κάθε καταστήματος να είναι διαδοχικοί: αριθμήθηκαν πρώτα τα τμήματα του πρώτου καταστήματος, στη συνέχεια τα τμήματα του δεύτερου καταστήματος κ.ο.κ. Το ψηφοδέλτιο ενός από τους συμμετέχοντες συνδυασμούς είχε 65 υποψηφίους. Κάθε ψηφοφόρος ψηφίζει σημειώνοντας σταυρό δίπλα στο όνομα κάθε υποψηφίου που επιλέγει.

Να αναπτύξετε αλγόριθμο, ο οποίος:

Δ1. Να διαβάζει:

α. Το πλήθος των εκλογικών τμημάτων για κάθε εκλογικό κατάστημα. Να γίνεται έλεγχος εγκυρότητας των τιμών που δίνονται, ώστε αυτές να είναι θετικές και το άθροισμά τους να είναι ίσο με 217. (μονάδες 4)

β.   Τα ονόματα των υποψηφίων του συνδυασμού. (μονάδα 1)

γ. Τον αριθμό των σταυρών που έλαβε καθένας από τους 65 υποψηφίους του συνδυασμού, σε κάθε εκλογικό τμήμα. (μονάδα 1)

Μονάδες 6

Δ2. Να εμφανίζει τον συνολικό αριθμό σταυρών που έλαβε κάθε υποψήφιος.

Μονάδες 2

Δ3. Να εμφανίζει τα ονόματα των υποψηφίων που έλαβαν τους περισσότερους συνολικούς σταυρούς στο δεύτερο εκλογικό κατάστημα.

Μονάδες 5

Δ4. Να εμφανίζει, σε αλφαβητική σειρά, τα ονόματα των δέκα πρώτων σε σταυρούς υποψηφίων. Σε περίπτωση που υπάρχουν υποψήφιοι που έλαβαν τον ίδιο συνολικό αριθμό σταυρών με τον δέκατο, να εμφανίζει και τα δικά τους ονόματα.

Μονάδες 7

Τα θέματα σε pdf, 2014, Επαναληπτικές, Ημερήσια

ΛΥΣΗ (περισσότερα…)

Θέμα Δ, 2014, Ημερήσια

Μια εταιρεία Πληροφορικής καταγράφει, για δέκα ιστότοπους, τον αριθμό των επισκέψεων που δέχεται ο καθένας, κάθε μέρα, για τέσσερις εβδομάδες.
Να αναπτύξετε αλγόριθμο, ο οποίος:
Δ1. Για καθένα από τους ιστότοπους να διαβάζει το όνομά του και τον αριθμό των επισκέψεων που δέχθηκε ο ιστότοπος για καθεμιά ημέρα. Δεν απαιτείται έλεγχος εγκυρότητας τιμών.
Μονάδες 2
Δ2. Να εμφανίζει το όνομα κάθε ιστοτόπου και τον συνολικό αριθμό των επισκέψεων που δέχθηκε αυτός στο διάστημα των τεσσάρων εβδομάδων.
Μονάδες 3
Δ3. Να εμφανίζει τα ονόματα των ιστοτόπων που κάθε μέρα στο διάστημα των τεσσάρων εβδομάδων δέχθηκαν περισσότερες από 500 επισκέψεις. Αν δεν υπάρχουν τέτοιοι ιστότοποι, να εμφανίζει κατάλληλο μήνυμα.
Μονάδες 6
Δ4. Να διαβάζει το όνομα ενός ιστοτόπου. Αν το όνομα αυτό δεν είναι ένα από τα δέκα ονόματα που έχουν δοθεί, να το ξαναζητά, μέχρι να δοθεί ένα από αυτά τα ονόματα. Να εμφανίζει τους αριθμούς των εβδομάδων (1-4) κατά τη διάρκεια των οποίων ο συνολικός (εβδομαδιαίος) αριθμός επισκέψεων στον ιστότοπο αυτό είχε τη μέγιστη τιμή.
Μονάδες 9

Τα θέματα σε pdf, 2014, Μαΐου-Ιουνίου, Ημερήσια

ΛΥΣΗ (περισσότερα…)

Παράδειγμα 4, Τετράδιο Εργασιών, Επίλυση δευτεροβάθμιας εξίσωσης

Η περίπτωση της δευτεροβάθμιας εξίσωσης είναι παρόμοια. Αρχικά είναι απαραίτητο η τιμή του Α να είναι μη μηδενική, πράγμα που ελέγχεται κατά την είσοδο. Στη συνέχεια, για την εύρεση πραγματικών ριζών της εξίσωσης Αx2+Βx+Γ=0, πρέπει να ελεγχθεί αν η διακρίνουσα είναι θετική. Και πάλι καλείται ο αλγόριθμος Ρίζα, που επιστρέφει την τετραγωνική ρίζα ενός θετικού αριθμού.

Αλγόριθμος ΕξίσωσηΒ
Αρχήεπανάληψης
Διάβασε a
Μέχρις
ότου a≠0
Διάβασε b
Διάβασε c
delta ← bb-4ac
Αν delta ≥ 0 τότε
solution1 ← (-b+Piζα(delta))/(2
a)
solution2 ← (-b-Ρίζα(delta))/(2*a)
Εκτύπωσε solution1,solution2
Τέλος_αν
Τέλος ΕξίσωσηΒ

Παράδειγμα 9. Βιβλίου, Εκτύπωση θετικών αριθμών με εντολή: αρχή_επανάληψης…μέχρις_ότου

par9bibliokef2Να διαβάζονται και να εκτυπώνονται όσοι θετικοί αριθμοί δίνονται από το πληκτρολόγιο. Ο αλγόριθμος τελειώνει, όταν δοθεί ένας αρνητικός αριθμός.
Αλγόριθμος Παράδειγμα9
Αρχή
επανάληψης
Διάβασε x
Εμφάνισε x
Μέχρις_ότου x < 0
Τέλος Παράδειγμα_9
Ας σημειωθεί ότι, στο παράδειγμα αυτό ο βρόχος επανάληψης θα εκτελεσθεί οπωσδήποτε τουλάχιστον μία φορά ακόμα και αν η αρχική τιμή της μεταβλητής x είναι αρνητική. Η βασική διαφοροποίηση αυτής της μορφής επαναληπτικής διαδικασίας σε σχέση με την επαναληπτική διαδικασία που παρουσιάσθηκε στο προηγούμενο παράδειγμα, οφείλεται στη θέση της λογικής συνθήκης στη ροή εκτέλεσης των εντολών.

Παρατήρηση: Η εντολή Αρχήεπανάληψης… Μέχριςότου εκτελείται οπωσδήποτε μια φορά

Θέμα Δ, 2011, Μαΐου-Ιουνίου, Ημερήσια

Στην αρχή της ποδοσφαιρικής περιόδου οι 22 παίκτες μιας ομάδας, οι οποίοι αριθμούνται από 1 έως 22, ψηφίζουν για τους 3 αρχηγούς που θα τους εκπροσωπούν. Κάθε παίκτης μπορεί να ψηφίσει όσους συμπαίκτες του θέλει, ακόμα και τον εαυτό του. Τα αποτελέσματα της ψηφοφορίας καταχωρίζονται σε έναν πίνακα ΨΗΦΟΣ με 22 γραμμές και 22 στήλες, έτσι ώστε το στοιχείο ΨΗΦΟΣ[i,j] να έχει την τιμή 1, όταν ο παίκτης με αριθμό i έχει ψηφίσει τον παίκτη με αριθμό j, και τιμή 0 στην αντίθετη περίπτωση. Να γράψετε αλγόριθμο ο οποίος:

Δ1. Να διαβάζει τα στοιχεία του πίνακα ΨΗΦΟΣ και να ελέγχει την ορθότητά τους με αποδεκτές τιμές 0 ή 1.

Μονάδες 4

Δ2. Να εμφανίζει το πλήθος των παικτών που δεν ψήφισαν κανέναν.

Μονάδες 4

Δ3. Να εμφανίζει το πλήθος των παικτών που ψήφισαν τον εαυτό τους.

Μονάδες 4

Δ4. Να βρίσκει τους 3 παίκτες που έλαβαν τις περισσότερες ψήφους και να εμφανίζει τους αριθμούς τους και τις ψήφους που έλαβαν. Θεωρήστε ότι δεν υπάρχουν ισοψηφίες.

Μονάδες 8

 Τα θέματα σε pdf, 2011, Μαΐου-Ιουνίου, Ημερήσια

ΛΥΣΗ (περισσότερα…)

Θέμα Γ, 2010, Μαΐου-Ιουνίου, Ημερήσια

Σε κάποιο σχολικό αγώνα, για το άθλημα «Άλμα εις μήκος» καταγράφεται για κάθε αθλητή η καλύτερη έγκυρη επίδοσή του. Τιμής ένεκεν, πρώτος αγωνίζεται ο περσινός πρωταθλητής. Η Επιτροπή του αγώνα διαχειρίζεται τα στοιχεία των αθλητών που αγωνίστηκαν. Να γράψετε αλγόριθμο ο οποίος:

Γ1. Να ζητάει το ρεκόρ αγώνων και να το δέχεται, εφόσον είναι θετικό και μικρότερο των 10 μέτρων.

Μονάδες 2

Γ2. Να ζητάει τον συνολικό αριθμό των αγωνιζομένων και για κάθε αθλητή το όνομα και την επίδοσή του σε μέτρα με τη σειρά που αγωνίστηκε.

Μονάδες 4

Γ3. Να εμφανίζει το όνομα του αθλητή με τη χειρότερη επίδοση.

Μονάδες 4

Γ4. Να εμφανίζει τα ονόματα των αθλητών που κατέρριψαν το ρεκόρ αγώνων. Αν δεν υπάρχουν τέτοιοι αθλητές, να εμφανίζει το πλήθος των αθλητών που πλησίασαν το ρεκόρ αγώνων σε απόσταση όχι μεγαλύτερη των 50 εκατοστών.

Μονάδες 6

Γ5. Να βρίσκει και να εμφανίζει τη θέση που κατέλαβε στην τελική κατάταξη ο περσινός πρωταθλητής.

Μονάδες 4

Σημείωση: Να θεωρήσετε ότι κάθε αθλητής έχει έγκυρη επίδοση και ότι όλες οι επιδόσεις των αθλητών που καταγράφονται είναι διαφορετικές μεταξύ τους.

ΛΥΣΗ (περισσότερα…)

Θέμα Γ, 2009, Επαναληπτικές, Ημερήσια

Στις γενικές εξετάσεις, κάθε γραπτό βαθμολογείται από δύο βαθμολογητές στην κλίμακα 1-100. Όταν η διαφορά των δύο βαθμών είναι μεγαλύτερη από δώδεκα μονάδες, το γραπτό αναβαθμολογείται, δηλαδή βαθμολογείται και από τρίτο βαθμολογητή.

Στα γραπτά που δεν έχουν αναβαθμολογηθεί, ο τελικός βαθμός προκύπτει από το πηλίκο της διαίρεσης του αθροίσματος των βαθμών των δύο βαθμολογητών διά δέκα.

Στα γραπτά που έχουν αναβαθμολογηθεί, ο τελικός βαθμός προκύπτει με τον ίδιο τρόπο, αλλά λαμβάνονται υπόψη οι δύο μεγαλύτεροι βαθμοί.

Για στατιστικούς λόγους, οι τελικοί βαθμοί (ΤΒ) κατανέμονται στις παρακάτω βαθμολογικές κατηγορίες:

1η 2η 3η 4η 5η 6η
0≤ΤΒ<5 5≤ΤΒ<10 10≤ TΒ<12 12≤ΤΒ<15 15≤ΤΒ<18 18≤ΤΒ≤20

Σ’ ένα βαθμολογικό κέντρο υπάρχουν 780 γραπτά στο μάθημα «Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον».

Οι βαθμοί των δύο βαθμολογητών έχουν καταχωριστεί στις δύο πρώτες στήλες ενός πίνακα Β[780,3].

Να γραφεί αλγόριθμος ο οποίος:

Α. Να ελέγχει, για κάθε γραπτό, αν χρειάζεται αναβαθμολόγηση. Αν χρειάζεται, να ζητάει από τον χρήστη τον βαθμό του τρίτου βαθμολογητή και να τον εισάγει στην αντίστοιχη θέση της τρίτης στήλης, διαφορετικά να εισάγει την τιμή -1.

Δεν απαιτείται έλεγχος εγκυρότητας.

Μονάδες 4

Β. Να υπολογίζει τον τελικό βαθμό κάθε γραπτού και να τον καταχωρίζει στην αντίστοιχη θέση ενός πίνακα Τ[780].

Μονάδες 7

Γ.  Να εμφανίζει τη βαθμολογική κατηγορία (ή τις κατηγορίες) με το μεγαλύτερο πλήθος γραπτών.

Μονάδες 9

Τα θέματα σε pdf, 2009, Επαναληπτικές, Ημερήσια

ΛΥΣΗ

(περισσότερα…)