Επιλογή Σελίδας

Θέμα Γ, 2017, Ημερήσια

ΘΕΜΑ Γ
Στο πλαίσιο ενός τοπικού σχολικού πρωταθλήματος βόλεϊ συμμετέχουν 5 σχολεία, αριθμημένα από το 1 έως το 5. Κάθε σχολείο παίζει μία φορά με όλα τα υπόλοιπα. Άρα θα πραγματοποιηθούν συνολικά 10 αγώνες. Νικητής ενός αγώνα είναι το σχολείο που έχει κερδίσει 3 σετ. Ο νικητής παίρνει 2 βαθμούς και ο ηττημένος 1 βαθμό.
Κάθε αγώνας προσδιορίζεται από τα σχολεία που παίζουν μεταξύ τους και το αποτέλεσμα του αγώνα σε σετ. Για παράδειγμα, η σειρά των στοιχείων: 4, 5, 1, 3 σημαίνει ότι το σχολείο 4 έπαιξε με το σχολείο 5 και έχασε τον αγώνα με 1 σετ υπέρ και 3 κατά. Αυτό αντίστοιχα σημαίνει ότι το σχολείο 5 κέρδισε τον αγώνα με το σχολείο 4 με 3 σετ υπέρ και 1 σετ κατά.
Τα δεδομένα των αγώνων αποθηκεύονται σε έναν δισδιάστατο πίνακα Α[5,3], όπου κάθε γραμμή αντιστοιχεί σε ένα σχολείο. Η τελική μορφή του πίνακα Α θα περιέχει για κάθε σχολείο, στην πρώτη (1η) στήλη τη βαθμολογία του (το άθροισμα των βαθμών του), στη δεύτερη (2η) το άθροισμα των σετ υπέρ και στην τρίτη (3η) το άθροισμα των σετ κατά, από όλους τους αγώνες.
Να κατασκευάσετε πρόγραμμα σε ΓΛΩΣΣΑ το οποίο:
Γ1. α) Να περιλαμβάνει κατάλληλο τμήμα δηλώσεων. (μονάδες 2)
β) Να διαβάζει τα ονόματα των 5 σχολείων και να τα καταχωρίζει στον πίνακα ΟΝ [5]. Η σειρά των σχολείων καθορίζει την αρίθμησή τους (1 έως 5). (μονάδες 2)
γ) Να αρχικοποιεί τον πίνακα Α[5,3]. (μονάδες 2)
Μονάδες 6
Γ2. Να διαβάζει για κάθε αγώνα τη σειρά των 4 στοιχείων που τον προσδιορίζουν και να ενημερώνει τον πίνακα Α και για τα δύο σχολεία όπως περιγράφεται παραπάνω.
Μονάδες 6
Γ3. Να κατατάσσει τα σχολεία σε φθίνουσα σειρά ανάλογα με τη βαθμολογία τους και σε περίπτωση ισοβαθμίας να προηγείται το σχολείο με τα περισσότερα σετ υπέρ.
Μονάδες 6
Γ4. Να εμφανίζει τα ονόματα των σχολείων, τη βαθμολογία τους, το άθροισμα των σετ υπέρ και το άθροισμα των σετ κατά, με βάση τη σειρά κατάταξής τους.
Μονάδες 2
Σημείωση: Θεωρείστε ότι δεν υπάρχει περίπτωση δύο σχολεία να έχουν και την ίδια βαθμολογία και τον ίδιο αριθμό σετ υπέρ.

ΔΤ2, Κεφάλαιο 3, Τετράδιο Εργασιών, Έξυπνη φυσαλίδα

ΕΚΦΩΝΗΣΗ:

Ο αλγόριθμος της φυσαλίδας όπως διατυπώθηκε στην παράγραφο 3.7 έχει το μειονέκτημα ότι δεν είναι αρκετά “έξυπνος” ώστε να διαπιστώνει στην αρχή ή στο μέσο της διαδικασίας αν ο πίνακας είναι ταξινομημένος. Να σχεδιασθεί μία παραλλαγή του αλγορίθμου αυτού που να σταματά όταν διαπιστωθεί ότι τα στοιχεία του πίνακα είναι ήδη ταξινομημένα. Υπόδειξη: Να χρησιμοποιήσετε μία βοηθητική μεταβλητή που να ελέγχει το τέλος κάθε επανάληψης του εξωτερικού βρόχου (“Για i από 2 μέχρι n”) αν για την τρέχουσα τιμή του i έγιναν αντιμεταθέσεις στοιχείων.

ΛΥΣΗ: (περισσότερα…)

Θέμα Δ, 2016, Ημερήσια, Παλαιό

Μια περιβαλλοντική οργάνωση έχει εκπαιδεύσει δέκα (10) εθελοντές οι οποίοι θα ενημερώσουν το κοινό σε θέματα που αφορούν την προστασία του περιβάλλοντος.
Να γράψετε πρόγραμμα σε ΓΛΩΣΣΑ, το οποίο:
Δ1.      
αΝα περιλαμβάνει κατάλληλο τμήμα δηλώσεων.  (μονάδα 1)
β. Για κάθε εθελοντή, να διαβάζει το όνομά του και τον αριθμό των ατόμων που ενημέρωσε κάθε μήνα, στη διάρκεια του προηγούμενου έτους (δεν απαιτείται έλεγχος εγκυρότητας). (μονάδες 2)
Μονάδες 3
Δ2. Για κάθε μήνα, να εμφανίζει το συνολικό αριθμό ατόμων που ενημέρωσαν οι δέκα (10) εθελοντές. Ο υπολογισμός του συνολικού αριθμού ατόμων, που ενημέρωσαν κάθε μήνα, να γίνει με κλήση κατάλληλης συνάρτησης.
Μονάδες 3
Δ3. Να εμφανίζει τα ονόματα των τριών εθελοντών που ενημέρωσαν  τα περισσότερα άτομα, κατά τη διάρκεια του προηγούμενου έτους. Να θεωρήσετε ότι κάθε εθελοντής ενημέρωσε διαφορετικό συνολικό αριθμό ατόμων κατά τη διάρκεια του έτους.
Μονάδες 9
Δ4. Να κατασκευάσετε τη συνάρτηση του ερωτήματος Δ2.
Μονάδες 5
Να  θεωρήσετε ότι κάθε άτομο ενημερώνεται μόνο από έναν εθελοντή.

ΛΥΣΗ (περισσότερα…)

Θέμα Δ, 2014, Επαναληπτικές, Ημερήσια

Στις πρόσφατες δημοτικές εκλογές, σε κάποιο δήμο της χώρας, χρησιμοποιήθηκαν για την ψηφοφορία 217 αίθουσες (εκλογικά τμήματα), σε 34 δημόσια κτήρια (εκλογικά καταστήματα). Τα τμήματα αριθμήθηκαν με τη σειρά, από το 1 μέχρι το 217, έτσι ώστε οι αριθμοί των εκλογικών τμημάτων κάθε καταστήματος να είναι διαδοχικοί: αριθμήθηκαν πρώτα τα τμήματα του πρώτου καταστήματος, στη συνέχεια τα τμήματα του δεύτερου καταστήματος κ.ο.κ. Το ψηφοδέλτιο ενός από τους συμμετέχοντες συνδυασμούς είχε 65 υποψηφίους. Κάθε ψηφοφόρος ψηφίζει σημειώνοντας σταυρό δίπλα στο όνομα κάθε υποψηφίου που επιλέγει.

Να αναπτύξετε αλγόριθμο, ο οποίος:

Δ1. Να διαβάζει:

α. Το πλήθος των εκλογικών τμημάτων για κάθε εκλογικό κατάστημα. Να γίνεται έλεγχος εγκυρότητας των τιμών που δίνονται, ώστε αυτές να είναι θετικές και το άθροισμά τους να είναι ίσο με 217. (μονάδες 4)

β.   Τα ονόματα των υποψηφίων του συνδυασμού. (μονάδα 1)

γ. Τον αριθμό των σταυρών που έλαβε καθένας από τους 65 υποψηφίους του συνδυασμού, σε κάθε εκλογικό τμήμα. (μονάδα 1)

Μονάδες 6

Δ2. Να εμφανίζει τον συνολικό αριθμό σταυρών που έλαβε κάθε υποψήφιος.

Μονάδες 2

Δ3. Να εμφανίζει τα ονόματα των υποψηφίων που έλαβαν τους περισσότερους συνολικούς σταυρούς στο δεύτερο εκλογικό κατάστημα.

Μονάδες 5

Δ4. Να εμφανίζει, σε αλφαβητική σειρά, τα ονόματα των δέκα πρώτων σε σταυρούς υποψηφίων. Σε περίπτωση που υπάρχουν υποψήφιοι που έλαβαν τον ίδιο συνολικό αριθμό σταυρών με τον δέκατο, να εμφανίζει και τα δικά τους ονόματα.

Μονάδες 7

Τα θέματα σε pdf, 2014, Επαναληπτικές, Ημερήσια

ΛΥΣΗ (περισσότερα…)

Θέμα Β, Ερώτημα 1, 2014, Ημερήσια

Για την ταξινόμηση, σε φθίνουσα σειρά, των στοιχείων ενός μονοδιάστατου πίνακα αριθμών Π[30] μπορεί να ακολουθηθεί η παρακάτω διαδικασία: Αρχικά, ο πίνακας σαρώνεται από την αρχή μέχρι το τέλος του, προκειμένου να βρεθεί το μεγαλύτερο στοιχείο του. Αυτό το στοιχείο τοποθετείται στην αρχή του πίνακα, ανταλλάσσοντας θέσεις με το στοιχείο της πρώτης θέσης του πίνακα. Η σάρωση του πίνακα επαναλαμβάνεται, ξεκινώντας τώρα από το δεύτερο στοιχείο του πίνακα. Το μεγαλύτερο από τα στοιχεία που απέμειναν ανταλλάσσει θέσεις με το στοιχείο της δεύτερης θέσης του πίνακα. Η σάρωση επαναλαμβάνεται, ξεκινώντας από το τρίτο στοιχείο του πίνακα, μετά από το τέταρτο στοιχείο του πίνακα κ.ο.κ.

Το παρακάτω ημιτελές τμήμα αλγορίθμου κωδικοποιεί την παραπάνω διαδικασία:

Για k από 1 μέχρι 29

θ <- .(1.).

Για i από k μέχρι 30

Αν Π[i] … Π[θ] τότε
θ<- .(3..)

Τέλος_αν

Τέλοςεπανάληψης
αντιμετάθεσε .(4.). , .(5..)
Τέλος
επανάληψης
Να γράψετε στο τετράδιό σας τους αριθμούς (1) έως (5), που αντιστοιχούν στα κενά του αλγορίθμου και, δίπλα σε κάθε αριθμό, ό,τι πρέπει να συμπληρωθεί, ώστε να γίνεται σωστά η ταξινόμηση.
Μονάδες 10

Τα θέματα σε pdf, 2014, Μαΐου-Ιουνίου, Ημερήσια

Θέμα Δ, 2011, Μαΐου-Ιουνίου, Ημερήσια

Στην αρχή της ποδοσφαιρικής περιόδου οι 22 παίκτες μιας ομάδας, οι οποίοι αριθμούνται από 1 έως 22, ψηφίζουν για τους 3 αρχηγούς που θα τους εκπροσωπούν. Κάθε παίκτης μπορεί να ψηφίσει όσους συμπαίκτες του θέλει, ακόμα και τον εαυτό του. Τα αποτελέσματα της ψηφοφορίας καταχωρίζονται σε έναν πίνακα ΨΗΦΟΣ με 22 γραμμές και 22 στήλες, έτσι ώστε το στοιχείο ΨΗΦΟΣ[i,j] να έχει την τιμή 1, όταν ο παίκτης με αριθμό i έχει ψηφίσει τον παίκτη με αριθμό j, και τιμή 0 στην αντίθετη περίπτωση. Να γράψετε αλγόριθμο ο οποίος:

Δ1. Να διαβάζει τα στοιχεία του πίνακα ΨΗΦΟΣ και να ελέγχει την ορθότητά τους με αποδεκτές τιμές 0 ή 1.

Μονάδες 4

Δ2. Να εμφανίζει το πλήθος των παικτών που δεν ψήφισαν κανέναν.

Μονάδες 4

Δ3. Να εμφανίζει το πλήθος των παικτών που ψήφισαν τον εαυτό τους.

Μονάδες 4

Δ4. Να βρίσκει τους 3 παίκτες που έλαβαν τις περισσότερες ψήφους και να εμφανίζει τους αριθμούς τους και τις ψήφους που έλαβαν. Θεωρήστε ότι δεν υπάρχουν ισοψηφίες.

Μονάδες 8

 Τα θέματα σε pdf, 2011, Μαΐου-Ιουνίου, Ημερήσια

ΛΥΣΗ (περισσότερα…)

Θέμα Α, Ερώτημα 5, 2010, Μαΐου-Ιουνίου, Ημερήσια

Δίνεται πίνακας Π[20] με αριθμητικές τιμές. Στις μονές θέσεις βρίσκονται καταχωρισμένοι θετικοί αριθμοί και στις ζυγές αρνητικοί αριθμοί. Επίσης, δίνεται το παρακάτω τμήμα αλγορίθμου ταξινόμησης τιμών του πίνακα.

Για x από 3 μέχρι 19 με_βήμα ______ 
    Για y από ______ μέχρι________ με_βήμα _________ 
       Αν Π[________ ] < Π[________ ] Τότε
          Αντιμετάθεσε Π[________ ], Π[_________ ]
       Τέλος_αν
    Τέλος_Επανάληψης
Τέλος_Επανάληψης

Να μεταφέρετε στο τετράδιό σας το παραπάνω τμήμα αλγορίθμου συμπληρώνοντας τα κενά με τις κατάλληλες σταθερές, μεταβλητές ή εκφράσεις, ώστε να ταξινομούνται σε αύξουσα σειρά μόνο οι θετικές τιμές του πίνακα.

Μονάδες 8

ΛΥΣΗ
(περισσότερα…)

Θέμα Γ, 2010, Μαΐου-Ιουνίου, Ημερήσια

Σε κάποιο σχολικό αγώνα, για το άθλημα «Άλμα εις μήκος» καταγράφεται για κάθε αθλητή η καλύτερη έγκυρη επίδοσή του. Τιμής ένεκεν, πρώτος αγωνίζεται ο περσινός πρωταθλητής. Η Επιτροπή του αγώνα διαχειρίζεται τα στοιχεία των αθλητών που αγωνίστηκαν. Να γράψετε αλγόριθμο ο οποίος:

Γ1. Να ζητάει το ρεκόρ αγώνων και να το δέχεται, εφόσον είναι θετικό και μικρότερο των 10 μέτρων.

Μονάδες 2

Γ2. Να ζητάει τον συνολικό αριθμό των αγωνιζομένων και για κάθε αθλητή το όνομα και την επίδοσή του σε μέτρα με τη σειρά που αγωνίστηκε.

Μονάδες 4

Γ3. Να εμφανίζει το όνομα του αθλητή με τη χειρότερη επίδοση.

Μονάδες 4

Γ4. Να εμφανίζει τα ονόματα των αθλητών που κατέρριψαν το ρεκόρ αγώνων. Αν δεν υπάρχουν τέτοιοι αθλητές, να εμφανίζει το πλήθος των αθλητών που πλησίασαν το ρεκόρ αγώνων σε απόσταση όχι μεγαλύτερη των 50 εκατοστών.

Μονάδες 6

Γ5. Να βρίσκει και να εμφανίζει τη θέση που κατέλαβε στην τελική κατάταξη ο περσινός πρωταθλητής.

Μονάδες 4

Σημείωση: Να θεωρήσετε ότι κάθε αθλητής έχει έγκυρη επίδοση και ότι όλες οι επιδόσεις των αθλητών που καταγράφονται είναι διαφορετικές μεταξύ τους.

ΛΥΣΗ (περισσότερα…)

Θέμα Δ, 2010, Μαΐου-Ιουνίου, Ημερήσια

Το ράλλυ Βορείων Σποράδων είναι ένας αγώνας ιστοπλοΐας ανοικτής θάλασσας που γίνεται κάθε χρόνο. Στην τελευταία διοργάνωση συμμετείχαν 35 σκάφη που διαγωνίστηκαν σε διαδρομή συνολικής απόστασης 70 μιλίων. Κάθε σκάφος ανήκει σε μια από τις κατηγορίες C1, C2, C3. Επειδή στον αγώνα συμμετέχουν σκάφη διαφορετικών δυνατοτήτων, η κατάταξη δεν προκύπτει από τον «πραγματικό» χρόνο τερματισμού αλλά από ένα «σχετικό» χρόνο, που υπολογίζεται διαιρώντας τον «πραγματικό» χρόνο του σκάφους με τον «ιδανικό». Ο ιδανικός χρόνος είναι διαφορετικός για κάθε σκάφος και προκύπτει πολλαπλασιάζοντας την απόσταση της διαδρομής με τον δείκτη GPH του σκάφους. Ο δείκτης GPH αντιπροσωπεύει τον ιδανικό χρόνο που χρειάζεται το σκάφος για να καλύψει απόσταση ενός μιλίου. Να κατασκευάσετε αλγόριθμο ο οποίος

Δ1.    Να ζητάει για κάθε σκάφος:

  • το όνομά του
  • την κατηγορία του ελέγχοντας την ορθή καταχώρηση
  • τον χρόνο (σε δευτερόλεπτα) που χρειάστηκε για να τερματίσει
  • τον δείκτη GPH (σε δευτερόλεπτα).

Μονάδες 4

Δ 2.  Να υπολογίζει τον σχετικό χρόνο κάθε σκάφους.

Μονάδες 5

Δ3. Να εμφανίζει την κατηγορία στην οποία ανήκουν τα περισσότερα σκάφη.

Μονάδες 6

Δ4. Να εμφανίζει για κάθε κατηγορία καθώς και για την γενική κατάταξη τα ονόματα των σκαφών που κερδίζουν μετάλλιο. (Μετάλλια απονέμονται στους 3 πρώτους κάθε κατηγορίας και στους 3 πρώτους της γενικής κατάταξης).

Μονάδες 5

Σημείωση: Να θεωρήσετε ότι κάθε κατηγορία έχει διαφορετικό αριθμό σκαφών και τουλάχιστον τρία σκάφη.

ΛΥΣΗ
(περισσότερα…)

Θέμα Δ, 2008, Μαΐου-Ιουνίου, Ημερήσια

Στο ευρωπαϊκό πρωτάθλημα ποδοσφαίρου συμμετέχουν 16 ομάδες. Κάθε ομάδα συμμετέχει σε 30 αγώνες. Να γράψετε αλγόριθμο ο οποίος:

α. Διαβάζει σε μονοδιάστατο πίνακα ΟΝ[16] τα ονόματα των ομάδων.

Μονάδες 2

β. Διαβάζει σε δισδιάστατο πίνακα ΑΠ[16,30] τα αποτελέσματα σε κάθε αγώνα ως εξής:

Τον χαρακτήρα «Ν» για ΝΙΚΗ

Τον χαρακτήρα «Ι» για ΙΣΟΠΑΛΙΑ

Τον χαρακτήρα «Η» για ΗΤΤΑ

και κάνει τον απαραίτητο έλεγχο εγκυρότητας των δεδομένων.

Μονάδες 4

γ. Για κάθε ομάδα υπολογίζει και καταχωρεί σε δισδιάστατο πίνακα ΠΛ[16,3] το πλήθος των νικών στην πρώτη   στήλη,   το   πλήθος  των   ισοπαλιών   στη   δεύτερη

στήλη, και το πλήθος των ηττών στην τρίτη στήλη του πίνακα. Ο πίνακας αυτός πρέπει προηγουμένως να έχει μηδενισθεί.

Μονάδες 6

δ. Με βάση τα στοιχεία του πίνακα ΠΛ[16,3] υπολογίζει και καταχωρεί σε νέο πίνακα ΒΑΘ[16] τη συνολική βαθμολογία κάθε ομάδας, δεδομένου ότι για κάθε νίκη η ομάδα παίρνει τρεις βαθμούς, για κάθε ισοπαλία έναν βαθμό και για κάθε ήττα κανέναν βαθμό.

Μονάδες 3

ε.    Εμφανίζει τα ονόματα και τη βαθμολογία των ομάδων ταξινομημένα σε φθίνουσα σειρά με βάση τη βαθμολογία.

Μονάδες 5

Τα θέματα σε pdf, 2008, Μαΐου-Ιουνίου, Ημερήσια

 ΛΥΣΗ

(περισσότερα…)

Θέμα Δ, 2004, Μαΐου-Ιουνίου, Ημερήσια

Για την πρώτη φάση της Ολυμπιάδας Πληροφορικής δήλωσαν συμμετοχή 500 μαθητές. Οι μαθητές διαγωνίζονται σε τρεις γραπτές εξετάσεις και βαθμολογούνται με ακέραιους βαθμούς στη βαθμολογική κλίμακα από 0 έως και 100.

Να γράψετε αλγόριθμο ο οποίος:

α. Να διαβάζει τα ονόματα των μαθητών και να τα αποθηκεύει σε μονοδιάστατο πίνακα.

Μονάδες 2

β. Να διαβάζει τους τρεις βαθμούς που έλαβε κάθε μαθητής και να τους αποθηκεύει σε δισδιάστατο πίνακα.

Μονάδες 2

γ. Να υπολογίζει το μέσο όρο των βαθμών του κάθε μαθητή.

Μονάδες 4

δ. Να εκτυπώνει τα ονόματα των μαθητών και δίπλα τους το μέσο όρο των βαθμών τους ταξινομημένα με βάση τον μέσο όρο κατά φθίνουσα σειρά. Σε περίπτωση ισοβαθμίας η σειρά ταξινόμησης των ονομάτων να είναι αλφαβητική.

Μονάδες 7

ε. Να υπολογίζει και να εκτυπώνει το πλήθος των μαθητών με το μεγαλύτερο μέσο όρο.

Μονάδες 5

Παρατήρηση:   Θεωρείστε ότι οι βαθμοί των μαθητών είναι μεταξύ του 0 και του 100 και ότι τα ονόματα των μαθητών είναι γραμμένα με μικρά γράμματα.

Παρατηρήσεις που αφορούν στα ΘΕΜΑΤΑ 2ο, 3ο, 4ο

Τα θέματα σε pdf, 2004, Μαΐου-Ιουνίου, Ημερήσια

 

Θέμα Δ, 2003, Επαναληπτικές, Ημερήσια

Κατά τη διάρκεια πρωταθλήματος μπάσκετ μια ομάδα που αποτελείται από δώδεκα (12) παίκτες έδωσε είκοσι (20) αγώνες, στους οποίους συμμετείχαν όλοι οι παίκτες.

Να αναπτύξετε στο τετράδιό σας αλγόριθμο ο οποίος:

α. Να διαβάζει τα ονόματα των παικτών και να τα αποθηκεύει σε μονοδιάστατο πίνακα.

Μονάδες 2

β. Να διαβάζει τους πόντους που σημείωσε κάθε παίκτης σε κάθε αγώνα και να τους αποθηκεύει σε πίνακα δύο διαστάσεων.

Μονάδες 3

γ. Να υπολογίζει για κάθε παίκτη το συνολικό αριθμό πόντων του σε όλους τους αγώνες και το μέσο όρο πόντων ανά αγώνα.

Μονάδες 6

δ. Να εκτυπώνει τα ονόματα των παικτών της ομάδας και το μέσο όρο πόντων του κάθε παίκτη ταξινομημένα με βάση το μέσο όρο τους κατά φθίνουσα σειρά.

Παρατήρηση: Σε περίπτωση ισοβαθμίας δεν μας ενδιαφέρει η σχετική σειρά των παικτών.

Μονάδες 9

Παρατήρηση που αφορά στα ΘΕΜΑΤΑ 3ο και 4ο

Οι εντολές σε έναν αλγόριθμο μπορούν να γραφούν με μικρά ή κεφαλαία γράμματα.

Τα θέματα σε pdf, 2003, Ημερήσια, Επαναληπτικές