Επιλογή Σελίδας

Παράδειγμα 3.5, FIFO – LIFO

Όπως είδαμε η δομή της στοίβας λειτουργεί με τη μέθοδο FIFO. Οι δύο αυτές μέθοδοι έχουν αρκετές χρήσεις σε πραγματικά προβλήματα.

Ας θεωρήσουμε για παράδειγμα την περίπτωση ενός αποθηκευτικού χώρου μιας επιχείρησης. Σε κάθε αποθήκη γίνονται εισαγωγές ειδών που προέρχονται από αγορές από προμηθευτές, αν η επιχείρηση είναι εμπορική ή από την παραγωγή, αν πρόκειται για βιομηχανική επιχείρηση. Τα εμπορεύματα ή προϊόντα τοποθετούνται σε κάποιους χώρους, αποθήκες, ράφια κ.λπ. Όταν γίνονται πωλήσεις κάποιων ειδών, τα είδη αυτά βγαίνουν από την αποθήκη και αποστέλλονται στους πελάτες. Έτσι εισαγωγές και εξαγωγές ειδών γίνονται συνεχώς στην αποθήκη ανάλογα με τη διαδικασία προμηθειών και τη ροή των πωλήσεων. Σε μια δεδομένη στιγμή για κάποιο είδος μπορεί να υπάρχουν αποθηκευμένα κάποια τεμάχια που προέρχονται από μια παραλαβή και κάποια άλλα που υπήρχαν πιο πριν. Όταν πρέπει να εξαχθεί λοιπόν ένα τεμάχιο από αυτό το είδος, προκύπτει το πρόβλημα, από ποια παρτίδα πρέπει να είναι; Η απάντηση στο ερώτημα αυτό έχει φυσική και λογιστική αξία. Αν το είδος αυτό δεν επηρεάζεται από το χρόνο, τότε ίσως δεν έχει μεγάλη σημασία η επιλογή. Αν όμως πρόκειται για είδος που μπορεί να αλλοιωθεί ή έχει ημερομηνία λήξης (π.χ. φάρμακα), τότε είναι φανερό ότι πρέπει να επιλεγεί το παλαιότερο. Στην περίπτωση αυτή λοιπόν πρέπει η εξαγωγή των ειδών να γίνεται με τη μέθοδο FIFO και συνήθως επαφίεται στον αποθηκάριο να κάνει τη σωστή επιλογή. Εξίσου δύσκολο είναι το πρόβλημα αυτό από την οικονομική και λογιστική σκοπιά, που μάλιστα αφορά όλα τα είδη με ή χωρίς ημερομηνία λήξης. Ας υποθέσουμε ότι μια επιχείρηση έχει πραγματοποιήσει τις επόμενες αγορές και πωλήσεις για ένα είδος.

par3-5-1kef3vmath

par3-5-2kef3vmath

(περισσότερα…)

ΔΤ3, Κεφάλαιο 3, Τετράδιο Εργασιών

Να δοθούν οι αλγόριθμοι Ώθηση (Push) και Απώθηση (Pop) που αντίστοιχα εκτελούν τις προφανείς λειτουργίες σε μία στοίβα. Να δοθεί ένα παράδειγμα στο οποίο να χρησιμοποιείται μία στοίβα από ακέραιους. Η στοίβα αντιπροσωπεύεται από έναν πίνακα μέχρι 100 θέσεων.

ΛΥΣΗ: (περισσότερα…)

ΔΤ4, Κεφάλαιο 3, Τετράδιο Εργασιών

Να δοθούν οι αλγόριθμοι ΕισαγωγήσεΟυρά (Enqueue) και ΕξαγωγήαπόΟυρά (Dequeue) που αντίστοιχα εκτελούν τις προφανείς λειτουργίες σε μία ουρά. Να δοθεί ένα παράδειγμα στο οποίο να χρησιμοποιείται μία ουρά από ακέραιους. Η ουρά αντιπροσωπεύεται από έναν πίνακα μέχρι 100 θέσεων.

ΛΥΣΗ: (περισσότερα…)

ΔΤ5, Κεφάλαιο 3, Τετράδιο Εργασιών

Έστω ότι η τάξη σας θα συμμετάσχει στην ημερήσια εθελοντική αιμοδοσία που πραγματοποιεί ο Δήμος της πόλης σας. Είναι γνωστό το επίθετο κάθε μαθητή και όλοι οι μαθητές θα συμμετάσχουν στην αιμοδοσία. Να γραφεί αλγόριθμος για τη δημιουργία ουράς των μαθητών έξω από το Κέντρο αιμοδοσίας με δεδομένο ότι η ουρά θα δημιουργηθεί με βάση την αλφαβητική σειρά των επιθέτων των μαθητών.

ΛΥΣΗ:  (περισσότερα…)

ΔΣ5, Κεφάλαιο 3, Τετράδιο Εργασιών

Ας υποθέσουμε ότι έχετε αναλάβει να μοιράσετε ένα σύνολο από βιβλία στους συμμαθητές σας. Αν ορίσετε μία ημέρα για το μοίρασμα των βιβλίων και οι συμμαθητές σας φθάνουν ο ένας μετά τον άλλο φτιάχνοντας μία ουρά, πώς θα ρυθμίσετε την είσοδο και την έξοδό τους από την ουρά; Να δώσετε το σχετικό αλγόριθμο εισαγωγής και εξαγωγής από την ουρά.

ΛΥΣΗ: (περισσότερα…)

Θέμα Β, Ερώτημα 2, 2016, Ημερήσια, Νέο

Κατά την είσοδό τους σε μια τράπεζα οι πελάτες παίρνουν διαδοχικούς αριθμούς προτεραιότητας 1, 2, 3… που καθορίζουν τη σειρά τους στην ουρά του μοναδικού ταμείου.

Κάθε 2 λεπτά της ώρας προσέρχεται ένας νέος πελάτης και προστίθεται στην ουρά. Ο ταμίας εξυπηρετεί κάθε φορά τον πρώτο πελάτη στην ουρά και η εξυπηρέτησή του διαρκεί 3 λεπτά ακριβώς. Μετά την εξυπηρέτησή του ο πελάτης αποχωρεί από την ουρά.

Κατά την αρχή της διαδικασίας (χρόνος 0) στην ουρά υπάρχει μόνο ο πελάτης με αριθμό προτεραιότητας 1.

Να γράψετε διαδοχικά, σε ξεχωριστές γραμμές, με τη σωστή σειρά, τους αριθμούς προτεραιότητας των πελατών που βρίσκονται στην ουρά του ταμείου αμέσως μετά το 1ο , 2ο , 3ο , 4ο , 5ο και 6ο λεπτό.

Μονάδες 10

ΦΥΛΛΑΔΙΟ ΘΕΜΑΤΩΝ

ΛΥΣΗ

(περισσότερα…)

Θέμα Α, Ερώτημα 1, 2016, Επαναληπτικές, Νέο

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν η πρόταση είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν η πρόταση είναι λανθασμένη.

  1. Η λογική έκφραση (Α > Β) Ή   ΟΧΙ(Α > Β) είναι πάντα αληθής για οποιεσδήποτε τιμές των αριθμητικών μεταβλητών Α και Β.
  2. Στη ΓΛΩΣΣΑ ο χαρακτήρας είναι ένας τύπος δεδομένων.
  3. Το κύριο χαρακτηριστικό των δένδρων   είναι ότι από έναν κόμβο υπάρχει μόνο ένας επόμενος κόμβος.
  4. Έστω ο πίνακας ακεραίων Α[10]. Η εντολή Σ <- Α[10] εκχωρεί στη μεταβλητή Σ το άθροισμα όλων των στοιχείων του πίνακα Α.
  5. Στη στοίβα, ο ίδιος δείκτης μάς δίνει, τόσο τη θέση του στοιχείου που μπορεί να εξαχθεί, όσο και τη θέση εκείνου που εισήλθε τελευταίο.

Μονάδες 10

ΛΥΣΗ

  1. Σωστό         2. Σωστό         3. Λάθος          4. Λάθος          5. Σωστό

Θέμα Α, Ερώτημα 5, 2016, Επαναληπτικές, Νέο

Σε μια κενή στοίβα πρόκειται να εισαχθούν τα στοιχεία Μ, Δ, Κ, με αυτή τη σειρά. Δίνονται οι ακόλουθες σειρές διαδοχικών πράξεων (να θεωρήσετε ότι η λειτουργία της ώθησης παριστάνεται με το γράμμα ω και η λειτουργία της απώθησης παριστάνεται με το γράμμα α):

  1. ω, ω, ω, α, α, α
  2. ω, α, ω, α, ω, α
  3. ω, ω, α, α, ω, α
  4. ω, ω, α, ω, α, α
  5. ω, α, ω, ω, α, α

Για καθεμιά από τις παραπάνω σειρές πράξεων να γράψετε στο τετράδιό σας τον αριθμό της (1 έως 5) και, δίπλα, μόνο τα στοιχεία που θα απωθηθούν με τη σειρά απώθησής τους.

Μονάδες 10

ΛΥΣΗ

  1. Κ, Δ, Μ
  2. Μ, Δ, Κ
  3. Δ, Μ, Κ
  4. Δ, Κ, Μ
  5. Μ, Κ, Δ

Θέμα Α, Eρώτημα 3, 2015, Ημερήσια

α. Πόσοι δείκτες απαιτούνται για την υλοποίηση μιας ουράς με μονοδιάστατο πίνακα (μονάδες 2) και τι δείχνει ο καθένας; (μονάδες 2)

β. Ποιος δείκτης της ουράς μεταβάλλεται κατά τη λειτουργία της εξαγωγής; (μονάδες 2)

Μονάδες 6

Τα θέματα σε pdf, 2015, Μαΐου-Ιουνίου, Ημερήσια

ΑΠΑΝΤΗΣΗ (Βλ. παράγραφο 3.5.)

A.3.α. Δύο δείκτες:

  • Ο Δείκτης εμπρός (front) που δείχνει στο επόμενο προς εξαγωγή στοιχείο
  • Ο Δείκτης πίσω (rear) που δείχνει στο τελευταίο στοιχεία που εισήχθηκε.

A.3.β.  Ο δείκτης εμπρός (front)

 

Θέμα A, Ερώτημα 1, 2013, Επαναληπτικές, Ημερήσια

Α1. α.   Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-4 και δίπλα τη λέξη ΣΣΤΟ, αν η πρόταση είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν η πρόταση είναι λανθασμένη.

  1. Η εύρεση του μικρότερου από πέντε αριθμούς είναι πρόβλημα βελτιστοποίησης.
  2. Ο δείκτης εμπρός (front) μιας ουράς μας δίνει τη θέση του στοιχείου, το οποίο που σε πρώτη ευκαιρία θα εξαχθεί.
  3. Ο διαχωρισμός αποτελεί την αντίστροφη πράξη της συγχώνευσης.
  4. Στη ΓΛΩΣΣΑ, ο μέσος όρος ενός συνόλου ακεραίων μεταβλητών πρέπει να αποθηκευτεί σε μεταβλητή πραγματικού τύπου.

(μονάδες 4)

β. Να γράψετε στο τετράδιό σας τους αριθμούς της στήλης Α και δίπλα το γράμμα της στήλης Β που αντιστοιχεί σωστά. Σημειώνεται ότι από τη στήλη Β περισσεύει μία επιλογή. (περισσότερα…)

Θέμα A, Ερώτημα 1, 2012, Μαΐου-Ιουνίου, Ημερήσια

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη.

  1. Ένας πίνακας έχει σταθερό περιεχόμενο αλλά μεταβλητό μέγεθος.
  2. Οι εντολές που βρίσκονται μέσα σε εντολή επανάληψης «Όσο … επανάλαβε» εκτελούνται τουλάχιστον μία φορά.
  3. Η χρήση των πινάκων σε ένα πρόγραμμα αυξάνει την απαιτούμενη μνήμη.
  4. Οι δυναμικές δομές δεδομένων αποθηκεύονται πάντα σε συνεχόμενες θέσεις μνήμης.
  5. Η μέθοδος επεξεργασίας «πρώτο μέσα πρώτο έξω» (FIFO) εφαρμόζεται στη δομή δεδομένων ΟΥΡΑ.

Μονάδες 5

Τα θέματα σε pdf, 2012, Μαΐου-Ιουνίου, Ημερήσια