Θέμα Δ, 2011, Μαΐου-Ιουνίου, Ημερήσια

Στην αρχή της ποδοσφαιρικής περιόδου οι 22 παίκτες μιας ομάδας, οι οποίοι αριθμούνται από 1 έως 22, ψηφίζουν για τους 3 αρχηγούς που θα τους εκπροσωπούν. Κάθε παίκτης μπορεί να ψηφίσει όσους συμπαίκτες του θέλει, ακόμα και τον εαυτό του. Τα αποτελέσματα της ψηφοφορίας καταχωρίζονται σε έναν πίνακα ΨΗΦΟΣ με 22 γραμμές και 22 στήλες, έτσι ώστε το στοιχείο ΨΗΦΟΣ[i,j] να έχει την τιμή 1, όταν ο παίκτης με αριθμό i έχει ψηφίσει τον παίκτη με αριθμό j, και τιμή 0 στην αντίθετη περίπτωση. Να γράψετε αλγόριθμο ο οποίος:

Δ1. Να διαβάζει τα στοιχεία του πίνακα ΨΗΦΟΣ και να ελέγχει την ορθότητά τους με αποδεκτές τιμές 0 ή 1.

Μονάδες 4

Δ2. Να εμφανίζει το πλήθος των παικτών που δεν ψήφισαν κανέναν.

Μονάδες 4

Δ3. Να εμφανίζει το πλήθος των παικτών που ψήφισαν τον εαυτό τους.

Μονάδες 4

Δ4. Να βρίσκει τους 3 παίκτες που έλαβαν τις περισσότερες ψήφους και να εμφανίζει τους αριθμούς τους και τις ψήφους που έλαβαν. Θεωρήστε ότι δεν υπάρχουν ισοψηφίες.

Μονάδες 8

 Τα θέματα σε pdf, 2011, Μαΐου-Ιουνίου, Ημερήσια

ΛΥΣΗ (περισσότερα…)