Επιλογή Σελίδας

Θέμα Δ, 2016, Επαναληπτικές, Ημερήσια, Παλαιό

Μια εταιρεία έχει δύο υποκαταστήματα, ένα στην Αθήνα και ένα στη Θεσσαλονίκη. Σε κάθε υποκατάστημα εργάζονται 10 πωλητές.

Να αναπτύξετε αλγόριθμο σε ψευδογλώσσα, ο οποίος:
Δ1. Για καθέναν από τους 20 πωλητές της εταιρείας, να διαβάζει το όνομά του και τον κωδικό του και να τα καταχωρίζει σε κατάλληλο δισδιάστατο πίνακα, έτσι ώστε στις πρώτες 10 γραμμές του πίνακα να υπάρχουν τα στοιχεία των πωλητών του υποκαταστήματος της Αθήνας και στις επόμενες 10 τα στοιχεία των πωλητών της Θεσσαλονίκης. Να θεωρήσετε ότι όλα τα ονόματα και όλοι οι κωδικοί είναι διαφορετικοί μεταξύ τους. Μονάδες 2

Δ2. Για κάθε παραγγελία της εταιρείας στη διάρκεια του προηγούμενου έτους, να διαβάζει τον κωδικό του πωλητή. Αν ο κωδικός ανήκει σε πωλητή της εταιρείας, να διαβάζει το ποσό της αντίστοιχης παραγγελίας που πήρε ο πωλητής (δεν απαιτείται έλεγχος εγκυρότητας) ή, διαφορετικά, να εμφανίζει το μήνυμα «Άγνωστος κωδικός». Η επαναληπτική διαδικασία να τερματίζεται όταν δοθεί, ως κωδικός πωλητή, η τιμή ΤΕΛΟΣ. Μονάδες 8

Δ3. Να υπολογίζει τις συνολικές πωλήσεις κάθε πωλητή στη διάρκεια του προηγούμενου έτους και να τις εμφανίζει μαζί με το όνομά του. Να θεωρήσετε ότι κάθε πωλητής πήρε παραπάνω από μία παραγγελία στη διάρκεια του προηγούμενου έτους. Μονάδες 4

Δ4. Για κάθε υποκατάστημα να βρίσκει και να εμφανίζει τα ονόματα των τριών πωλητών με τις μεγαλύτερες συνολικές πωλήσεις στη διάρκεια του προηγούμενου έτους. Να θεωρήσετε ότι οι συνολικές πωλήσεις όλων των πωλητών είναι διαφορετικές μεταξύ τους. Μονάδες 6

ΦΥΛΛΑΔΙΟ ΘΕΜΑΤΩΝ

ΛΥΣΗ (περισσότερα…)

Θέμα Δ, 2016, Επαναληπτικές, Νέο

Στον αρχαιολογικό χώρο της Πύλου διασώθηκαν θραύσματα κεραμικών πινακίδων στα οποία είχαν καταγραφεί σε γραμμές βασικά αγαθά με τις ποσότητες τους, τα οποία είχε συλλέξει η πόλη κατά τη διάρκεια καλλιεργητικών περιόδων. Σε κάθε θραύσμα, αναφέρονται τα πλήρη στοιχεία (όνομα αγαθού, περίοδος, ποσότητα) για ένα ή περισσότερα αγαθά. Βρέθηκαν στοιχεία για δεκαπέντε (15) βασικά αγαθά και πέντε (5) καλλιεργητικές περιόδους. Όλα τα αγαθά υπάρχουν και στις πέντε περιόδους

Σε κάθε γραμμή οι πρώτοι δέκα χαρακτήρες αντιστοιχούν στο όνομα του αγαθού, ο ενδέκατος στην καλλιεργητική περίοδο και ο δωδέκατος στην ποσότητα που συλλέχτηκε. Οι πέντε καλλιεργητικές περίοδοι αναπαρίστανται από τους χαρακτήρες Α, Β, Γ, Δ και Ε. Η ποσότητα που συλλέχτηκε αναπαρίσταται από τους χαρακτήρες Ι, Κ, Λ, Μ, Ν, Ξ και Ο. Έχει βρεθεί ότι η ποσότητα που αντιστοιχεί σε αυτούς είναι: Ι = 10, Κ = 50, Λ = 100, Μ = 500, Ν  =  1.000,  Ξ  =  5.000  και   Ο  =  10.000.

Συνολικά τα στοιχεία των θραυσμάτων μπορούν να αναπαρασταθούν με ένα δισδιάστατο πίνακα Π[75,12]. Κάθε γραμμή του πίνακα περιέχει τα στοιχεία των αγαθών (όνομα αγαθού, καλλιεργητική περίοδος, ποσότητα). Κάθε στοιχείο του πίνακα περιέχει ένα μόνο χαρακτήρα.

Να γράψετε πρόγραμμα σε ΓΛΩΣΣΑ το οποίο:

Δ1.  α. Να περιλαμβάνει κατάλληλο τμήμα δηλώσεων. (μονάδα 1)

β. Να εισάγει σε πίνακα χαρακτήρων Π[75,12] τα στοιχεία των αγαθών που βρέθηκαν στα θραύσματα των πινακίδων. (μονάδες 2)

Μονάδες 3

Δ2. Να ταξινομεί κατά αύξουσα σειρά τον πίνακα Π, με βάση την καλλιεργητική περίοδο, και, για την ίδια καλλιεργητική περίοδο, να ταξινομεί τα αγαθά, με βάση τον πρώτο χαρακτήρα κάθε αγαθού. (Θεωρήστε ότι ο πρώτος χαρακτήρας κάθε αγαθού είναι μοναδικός).

Μονάδες 6

Δ3. α. Να δημιουργεί έναν πίνακα ακεραίων Α[75]. Κάθε στοιχείο του πίνακα Α αντιστοιχεί σε μια γραμμή του ταξινομημένου πίνακα Π και περιέχει την αντίστοιχη ποσότητα του αγαθού που συλλέχτηκε. Η μετατροπή της ποσότητας από χαρακτήρα σε αριθμό να γίνει με βάση την αντιστοιχία που δόθηκε παραπάνω.  (μονάδες 2)

β. Να βρίσκει και να εμφανίζει για κάθε αγαθό το πρώτο γράμμα του ονόματός του και την καλλιεργητική του περίοδο με τη μέγιστη ποσότητα που συλλέχτηκε. (Θεωρήστε ότι η μέγιστη ποσότητα κάθε αγαθού είναι μοναδική).  (μονάδες 4)

Μονάδες 6

Δ4. Να δημιουργεί έναν πίνακα ακεραίων Σ[15]. Κάθε στοιχείο του πίνακα Σ αντιστοιχεί σε ένα αγαθό (όπως αυτό εμφανίζεται στις δεκαπέντε πρώτες σειρές του πίνακα Π) και περιέχει την συνολική ποσότητα του αγαθού που συλλέχτηκε στις πέντε καλλιεργητικές περιόδους.

Μονάδες 5

ΦΥΛΛΑΔΙΟ ΘΕΜΑΤΩΝ (pdf)

ΛΥΣΗ (περισσότερα…)

Θέμα Δ, 2015, Επαναληπτικές, Ημερήσια

Μια πολυκατοικία έχει 5 ορόφους, με 8 διαμερίσματα (Δ1, Δ2, …,Δ8) σε κάθε όροφο. Τα διαμερίσματα Δ1 όλων των ορόφων έχουν το ίδιο εμβαδό (Ε1), τα διαμερίσματα Δ2 όλων των ορόφων έχουν το ίδιο εμβαδό (Ε2) κ.ο.κ. Το ποσό των κοινοχρήστων της πολυκατοικίας κατανέμεται στους 5 ορόφους, σύμφωνα με το ποσοστό συμμετοχής του κάθε ορόφου, όπως φαίνεται στον Πίνακα III.

Όροφος Ποσοστό  συμμετοχής
1ος 5%
2ος 15%
3ος 20%
4ος 25%
5ος 35%

Πίνακας  ΙΙΙ

Το ποσό των κοινοχρήστων του κάθε ορόφου κατανέμεται στα διαμερίσματα του ορόφου αυτού, ανάλογα με το εμβαδό του καθενός διαμερίσματος.
Να γράψετε πρόγραμμα, το οποίο:
Δ1.     Να περιλαμβάνει κατάλληλο τμήμα δηλώσεων.
Μονάδες 2
Δ2.     Να ζητάει:
α.     Το συνολικό ποσό κοινοχρήστων της πολυκατοικίας (μονάδα 1).
β.     Τα εμβαδά Ε1, Ε2, … Ε8. (μονάδα 1).
Μονάδες 2
Δ3. Να υπολογίζει το ποσό των κοινοχρήστων που αναλογεί σε κάθε όροφο της πολυκατοικίας.
Μονάδες 4
Δ4. Να υπολογίζει το ποσό των κοινοχρήστων που αναλογεί σε κάθε διαμέρισμα της πολυκατοικίας.
Μονάδες 7
Δ5. Να αναζητά και να εμφανίζει τον αριθμό ορόφου (1-5) και τον αριθμό διαμερίσματος (1-8) ενός διαμερίσματος στο οποίο αναλογεί ποσό κοινοχρήστων μεγαλύτερο του μέσου όρου όλης της πολυκατοικίας. Η αναζήτηση να ξεκινά από τον 1ο όροφο και για κάθε όροφο να ξεκινά από το διαμέρισμα Δ8. Η αναζήτηση να τερματίζεται μόλις βρεθεί ένα τέτοιο διαμέρισμα.
Μονάδες 5

Τα θέματα σε pdf, 2015, Επαναληπτικές, Ημερήσια

ΛΥΣΗ

(περισσότερα…)

Θέμα Δ, 2014, Επαναληπτικές, Ημερήσια

Στις πρόσφατες δημοτικές εκλογές, σε κάποιο δήμο της χώρας, χρησιμοποιήθηκαν για την ψηφοφορία 217 αίθουσες (εκλογικά τμήματα), σε 34 δημόσια κτήρια (εκλογικά καταστήματα). Τα τμήματα αριθμήθηκαν με τη σειρά, από το 1 μέχρι το 217, έτσι ώστε οι αριθμοί των εκλογικών τμημάτων κάθε καταστήματος να είναι διαδοχικοί: αριθμήθηκαν πρώτα τα τμήματα του πρώτου καταστήματος, στη συνέχεια τα τμήματα του δεύτερου καταστήματος κ.ο.κ. Το ψηφοδέλτιο ενός από τους συμμετέχοντες συνδυασμούς είχε 65 υποψηφίους. Κάθε ψηφοφόρος ψηφίζει σημειώνοντας σταυρό δίπλα στο όνομα κάθε υποψηφίου που επιλέγει.

Να αναπτύξετε αλγόριθμο, ο οποίος:

Δ1. Να διαβάζει:

α. Το πλήθος των εκλογικών τμημάτων για κάθε εκλογικό κατάστημα. Να γίνεται έλεγχος εγκυρότητας των τιμών που δίνονται, ώστε αυτές να είναι θετικές και το άθροισμά τους να είναι ίσο με 217. (μονάδες 4)

β.   Τα ονόματα των υποψηφίων του συνδυασμού. (μονάδα 1)

γ. Τον αριθμό των σταυρών που έλαβε καθένας από τους 65 υποψηφίους του συνδυασμού, σε κάθε εκλογικό τμήμα. (μονάδα 1)

Μονάδες 6

Δ2. Να εμφανίζει τον συνολικό αριθμό σταυρών που έλαβε κάθε υποψήφιος.

Μονάδες 2

Δ3. Να εμφανίζει τα ονόματα των υποψηφίων που έλαβαν τους περισσότερους συνολικούς σταυρούς στο δεύτερο εκλογικό κατάστημα.

Μονάδες 5

Δ4. Να εμφανίζει, σε αλφαβητική σειρά, τα ονόματα των δέκα πρώτων σε σταυρούς υποψηφίων. Σε περίπτωση που υπάρχουν υποψήφιοι που έλαβαν τον ίδιο συνολικό αριθμό σταυρών με τον δέκατο, να εμφανίζει και τα δικά τους ονόματα.

Μονάδες 7

Τα θέματα σε pdf, 2014, Επαναληπτικές, Ημερήσια

ΛΥΣΗ (περισσότερα…)

Θέμα Δ, 2013, Επαναληπτικές, Ημερήσια

Tα δεδομένα (κείμενο, εικόνα, ήχος, κλπ), κατά τη μετάδοσή τους μέσω ενσύρματων ή ασύρματων καναλιών επικοινωνίας, αλλοιώνονται λόγω του θορύβου που χαρακτηρίζει κάθε κανάλι. Ο τρόπος προστασίας των δεδομένων μετάδοσης είναι ο ακόλουθος:

Για κάθε bit (ακέραιος με τιμή 0 ή 1), που ο πομπός θέλει να στείλει, μεταδίδει μια λέξη, που αντιστοιχεί σε πίνακα ΜΕΤΑΔΟΣΗ[31] με όλες τις τιμές του ταυτόσημες με το προς μετάδοση bit, δηλαδή, αν πρόκειται να σταλεί το bit 1, τότε η λέξη που μεταδίδεται είναι η 11…1 μήκους 31 bits, ενώ αν πρόκειται να σταλεί το bit 0, τότε η λέξη που μεταδίδεται είναι η 00…0, μήκους 31 bits. Ο δέκτης λαμβάνει λέξη μήκους 31 bits, τα οποία τοποθετούνται σε πίνακα ΛΗΨΗ[31]. Έχουμε «ΛΑΝΘΑΣΜΕΝΗ ΛΗΨΗ», εάν υπάρχει τουλάχιστον ένα στοιχείο του πίνακα ΛΗΨΗ[31] με διαφορετική τιμή από αυτήν του αντίστοιχου στοιχείου του πίνακα ΜΕΤΑΔΟΣΗ[31]. Εάν το πλήθος των 1 του πίνακα ΛΗΨΗ[31] είναι μεγαλύτερο από το πλήθος των 0, τότε ο δέκτης αποφασίζει ότι ο πομπός έστειλε 1, ενώ σε αντίθετη περίπτωση ο δέκτης αποφασίζει ότι ο πομπός έστειλε 0. Σε κάθε περίπτωση, αν περισσότερα από τα μισά των 31 bits της λέξης μετάδοσης έχουν αλλοιωθεί, τότε ο δέκτης θα έχει πάρει «ΛΑΝΘΑΣΜΕΝΗ ΑΠΟΦΑΣΗ».

Να γραφεί πρόγραμμα σε ΓΛΩΣΣΑ, το οποίο να κάνει τα εξής:

Δ1. Να περιλαμβάνει κατάλληλο τμήμα δηλώσεων.

Μονάδες 3

Δ2. Για κάθε τιμή ποιότητας του καναλιού, που χαρακτηρίζεται από ακεραίους από 1 έως και 10, να πραγματοποιούνται το πολύ 100.000 διαφορετικές προσπάθειες μετάδοσης-λήψης και διόρθωσης λαθών. Εάν όμως ληφθούν 100 λανθασμένες αποφάσεις, τότε να διακόπτεται η διαδικασία για τη συγκεκριμένη τιμή ποιότητας του καναλιού.

Μονάδες 4

Δ3.Σε κάθε προσπάθεια μετάδοσης-λήψης και διόρθωσης λαθών να πραγματοποιούνται οι ακόλουθες ενέργειες:

α. Να διαβάζει (χωρίς έλεγχο εγκυρότητας των τιμών τους) τη μεταδοθείσα λέξη, καθώς και τη ληφθείσα λέξη και να ελέγχει, εάν αυτές ταυτίζονται.

β. Να διορθώνει τη ληφθείσα λέξη στο δέκτη, βάσει της παραπάνω περιγραφής του αλγορίθμου.

Μονάδες 9

Δ4. α. Να αποθηκεύει, για κάθε τιμή ποιότητας καναλιού, σε πίνακα ΛΑΘΗΑΠΟΦ[10] το ποσοστό των λανθασμένων αποφάσεων και σε πίνακα ΛΑΘΗΛΗΨ[10] το ποσοστό των λανθασμένων λήψεων.

β. Να εμφανίζει συγκεντρωτικά τα ποσοστά των λανθασμένων αποφάσεων και λανθασμένων λήψεων στο δέκτη.

Μονάδες 4

Τα θέματα σε pdf, 2013, Επαναληπτικές, Ημερήσια

ΛΥΣΗ (περισσότερα…)

Θέμα Δ, 2012, Επαναληπτικές, Ημερήσια

Εταιρεία που ασχολείται με μετρήσεις τηλεθέασης καταγράφει στοιχεία, ανά ημέρα και για χρονικό διάστημα μίας εβδομάδας, τα οποία αφορού την τηλεθέαση   των κεντρικών δελτίων ειδήσεων που  προβάλλονται από πέντε (5) τηλεοπτικούς σταθμούς.
Για τη διευκόλυνση της στατιστικής επεξεργασίας των δεδομένων να αναπτύξετε πρόγραμμα το οποίο:

Δ1.  Να περιλαμβάνει τμήμα δηλώσεων.
Μονάδες 2
Δ2. Για κάθε έναν από τους τηλεοπτικούς σταθμούς να δέχεται το όνομά του και το πλήθος των τηλεθεατών που παρακολούθησαν το κεντρικό δελτίο ειδήσεων κάθε μέρα της εβδομάδας, από Δευτέρα έως και Κυριακή. Να μη γίνει έλεγχος εγκυρότητας.
Μονάδες 4
Δ3.
Να καλεί για κάθε έναν από τους τηλεοπτικούς σταθμούς κατάλληλο υποπρόγραμμα, το οποίο να υπολογίζει και να επιστρέφει το μέσο πλήθος τηλεθεατών, που παρακολούθησαν το κεντρικό δελτίο ειδήσεών του, τη συγκεκριμένη εβδομάδα. Να αναπτύξετε το κατάλληλο υποπρόγραμμα.
Μονάδες 4
Δ4.  Να εμφανίζει τα ονόματα των σταθμών για τους οποίους ο μέσος όρος τηλεθέασης του Σαββατοκύριακου (2 ημέρες) ήταν  τουλάχιστον  10% μεγαλύτερος από το μέσο όρο τηλεθέασης στις καθημερινές (Δευτέρα έως και Παρασκευή).
Μονάδες 5
Δ5.
Να εμφανίζει τα ονόματα των τηλεοπτικών σταθμών, οι οποίοι κάθε ημέρα, από Δευτέρα έως και Κυριακή, παρουσιάζουν συνεχώς, από ημέρα σε ημέρα, αύξηση τηλεθέασης. Αν δεν υπάρχουν τέτοιοι σταθμοί, να εμφανίζει το μήνυμα: «Κανένας σταθμός δεν είχε συνεχή αύξηση τηλεθέασης».
Μονάδες 5

Τα θέματα σε pdf, 2012, Επαναληπτικές, Ημερήσια

ΛΥΣΗ (περισσότερα…)

Θέμα Δ, 2011, Επαναληπτικές, Ημερήσια

Ένας όμιλος αποτελείται από 20 εταιρίες. Να γράψετε πρόγραμμα το οποίο:
Δ1. να περιλαμβάνει τμήμα δηλώσεων.
Μονάδες 2
Δ2. να διαβάζει τα ονόματα των εταιριών του ομίλου και τα κέρδη τους για κάθε ένα από τα έτη 2001 έως και 2005. (Θεωρήστε ότι τα κέρδη είναι θετικοί αριθμοί.)
Μονάδες 2
Δ3. για κάθε εταιρία του ομίλου να καλεί συνάρτηση για τον υπολογισμό του συνολικού κέρδους της εταιρίας στην πενταετία. Στη συνέχεια να υπολογίζει και να εμφανίζει το μέσο ετήσιο κέρδος του ομίλου.
Μονάδες 5
Δ4. για κάθε εταιρία να βρίσκει την τριετία με το μεγαλύτερο συνολικό κέρδος και να εμφανίζει το όνομα της εταιρίας και το πρώτο έτος της συγκεκριμένης τριετίας. (Θεωρήστε ότι η τριετία αυτή είναι μοναδική.)
Μονάδες 5
Δ5.   Να κατασκευάσετε τη συνάρτηση που θα χρησιμοποιήσετε στο ερώτημα Δ3.
Μονάδες 6

Τα θέματα σε pdf, 2011, Επαναληπτικές, Ημερήσια

ΛΥΣΗ 

(περισσότερα…)

Θέμα Δ, 2010, Επαναληπτικές, Ημερήσια

Ερευνητές που ασχολούνται με μοντέλα προσομοίωσης εξάπλωσης επιδημιών χρησιμοποιούν για τις μελέτες τους ένα αριθμητικό πίνακα Μ[5000]. Κάθε κελί του πίνακα αυτού αντιπροσωπεύει ένα άτομο σε μια περιοχή 5.000 κατοίκων στην οποία υπάρχουν εστίες μιας συγκεκριμένης μολυσματικής ασθένειας (επιδημίας). Από σύμβαση η τιμή μηδέν 0 σε ένα κελί αντιπροσωπεύει ένα υγιές άτομο, ενώ η τιμή -1 αντιπροσωπεύει ένα άτομο που έχει τη συγκεκριμένη ασθένεια (μολυσμένο άτομο). Κάθε άτομο έρχεται σε επαφή με τα γειτονικά του και η ασθένεια μπορεί να μεταδοθεί από τον ένα στον άλλο. (Γειτονικά χαρακτηρίζονται δύο άτομα, όταν τα κελιά του πίνακα που τα αντιπροσωπεύουν έχουν μια κοινή πλευρά).

Θεωρήστε ότι δίνεται ο πίνακας Μ που περιέχει ήδη έναν αριθμό  μολυσμένων  ατόμων.  Να  υλοποιήσετε  αλγόριθμο  ο οποίος:

Δ1. Υπολογίζει   και   εμφανίζει   με   κατάλληλο   μήνυμα   τον συνολικό αριθμό των μολυσμένων ατόμων που υπάρχουν στο σύνολο του πληθυσμού.

Μονάδες 4

Δ2. Αποθηκεύει σε κάθε κελί του πίνακα Μ που αντιπροσωπεύει ένα υγιές άτομο έναν αριθμό ο οποίος δείχνει με πόσα μολυσμένα άτομα γειτονεύει το υγιές.

Μονάδες 8

Δ3. Βρίσκει αν υπάρχει έστω και μία «σημαντική» εστία μόλυνσης. Αν υπάρχει, εμφανίζει το μήνυμα «Υπάρχει σημαντική εστία μόλυνσης» μαζί με τη θέση του πρώτου κελιού της εστίας. Αν δεν υπάρχει, εμφανίζει το μήνυμα «∆εν υπάρχει σημαντική εστία μόλυνσης». (Μια εστία μόλυνσης χαρακτηρίζεται σημαντική, όταν δύο ή περισσότερα μολυσμένα άτομα βρίσκονται σε συνεχόμενα γειτονικά κελιά).

Μονάδες 8

Τα θέματα σε pdf, 2010, Επαναληπτικές, Ημερήσια

ΛΥΣΗ

(περισσότερα…)

Θέμα Δ, 2009, Επαναληπτικές, Ημερήσια

Το παιχνίδι τρίλιζα παίζεται με διαδοχικές κινήσεις δύο παικτών σε έναν πίνακα Τ[3,3]. Οι παίκτες συμπληρώνουν εναλλάξ μια θέση του πίνακα, τοποθετώντας ο μεν πρώτος το σύμβολοχαρακτήρα ‘Χ’, ο δε δεύτερος το σύμβολο–χαρακτήρα ‘Ο’.

Νικητής είναι ο παίκτης που θα συμπληρώσει πρώτος μια τριάδα όμοιων συμβόλων σε κάποια γραμμή, στήλη ή διαγώνιο του πίνακα. Αν ο πίνακας συμπληρωθεί χωρίς νικητή, το παιχνίδι θεωρείται ισόπαλο.

Α. Να γράψετε πρόγραμμα στη «ΓΛΩΣΣΑ», το οποίο:

  1. Να τοποθετεί σε κάθε θέση του πίνακα Τ τον χαρακτήρα ‘-’.

Μονάδες 2

  1. Για κάθε κίνηση:

α. Να δέχεται τις συντεταγμένες μιας θέσης του πίνακα Τ και να τοποθετεί στην αντίστοιχη θέση το σύμβολο του παίκτη. Να θεωρήσετε ότι οι τιμές των συντεταγμένων είναι πάντοτε σωστές (1 έως 3) είναι όμως αποδεκτές, μόνον αν η θέση που προσδιορίζουν δεν περιέχει ήδη ένα σύμβολο παίκτη.

Μονάδες 4

β. Να ελέγχει εάν με την κίνησή του ο παίκτης νίκησε. Για τον σκοπό αυτόν, να καλεί τη συνάρτηση ΝΙΚΗΣΕ, που περιγράφεται στο ερώτημα Β.

Μονάδες 2

  1. Να τερματίζει το παιχνίδι, εφόσον σημειωθεί ισοπαλία ή νικήσει ένας από τους δύο παίκτες.

Μονάδες 2

  1. Να εμφανίζει με κατάλληλο μήνυμα (πρώτος παίκτης/ δεύτερος παίκτης/ισοπαλία) το αποτέλεσμα του παιχνιδιού.

Μονάδες 2

Β. Να κατασκευάσετε τη συνάρτηση ΝΙΚΗΣΕ, η οποία θα δέχεται τον πίνακα Τ και τις συντεταγμένες (Γ, Σ) μιας θέσης του πίνακα και θα επιστρέφει την τιμή ΑΛΗΘΗΣ, αν υπάρχει τρεις φορές το ίδιο σύμβολο, σε τουλάχιστον μια από τις παρακάτω περιπτώσεις:

  1. Στη γραμμή Γ.
  2. Στη στήλη Σ.
  3. Στην κύρια διαγώνιο (δηλαδή Γ=Σ).
  4. Στη δευτερεύουσα διαγώνιο (δηλαδή Γ+Σ=4).

Σε κάθε άλλη περίπτωση, η συνάρτηση να επιστρέφει την τιμή ΨΕΥΔΗΣ.

Μονάδες 8

Τα θέματα σε pdf, 2009, Επαναληπτικές, Ημερήσια

ΛΥΣΗ

(περισσότερα…)

Θέμα Δ, 2008, Επαναληπτικές, Ημερήσια

Στο άθλημα των 110 μέτρων μετ’ εμποδίων, στους δύο ημιτελικούς αγώνες συμμετέχουν δέκα έξι (16) αθλητές (8 σε κάθε ημιτελικό). Σύμφωνα με τον κανονισμό στον τελικό προκρίνεται ο πρώτος αθλητής κάθε ημιτελικού. Η οκτάδα του τελικού συμπληρώνεται με τους αθλητές που έχουν τους έξι (6) καλύτερους χρόνους απ’ όλους τους υπόλοιπους συμμετέχοντες. Να θεωρήσετε ότι δεν υπάρχουν αθλητές με ίδιους χρόνους. Να γράψετε πρόγραμμα στη «ΓΛΩΣΣΑ» το οποίο:
α. περιλαμβάνει το τμήμα δηλώσεων. Μονάδες 2
β. καλεί τη διαδικασία ΕΙΣΟ∆ΟΣ για κάθε ημιτελικό ξεχωριστά. Η διαδικασία διαβάζει το όνομα του αθλητή και τoν χρόνο του (με ακρίβεια δεκάτου του δευτερολέπτου). Μονάδες 2
γ. καλεί τη διαδικασία ΤΑΞΙΝΟΜΗΣΗ για κάθε ημιτελικό ξεχωριστά. Η διαδικασία ταξινομεί τους αθλητές ως προς τον χρόνο τους με αύξουσα σειρά. Μονάδες 2
δ. δημιουργεί τον πίνακα ΟΝ με τα ονόματα και τον πίνακα ΧΡ με τους αντίστοιχους χρόνους των αθλητών που προκρίθηκαν στον τελικό Μονάδες 6
ε. εμφανίζει τα ονόματα και τους χρόνους των αθλητών που θα λάβουν μέρος στον τελικό. Μονάδες 2
Να γράψετε
α. τη διαδικασία ΕΙΣΟ∆ΟΣ. Μονάδες 2
β. τη διαδικασία ΤΑΞΙΝΟΜΗΣΗ. Μονάδες 4

ΛΥΣΗ

(περισσότερα…)